Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA imaging study of children with autism finds broken mirror neuron system

06.12.2005


Findings pinpoint mechanism behind social deficits



New imaging research at UCLA detailed Dec. 4 as an advance online publication of the journal Nature Neuroscience shows children with autism have virtually no activity in a key part of the brain’s mirror neuron system while imitating and observing emotions.
Mirror neurons fire when a person performs a goal-directed action and while he or she observes the same action performed by others. Neuroscientists believe this observation-execution matching system provides a neural mechanism by which others’ actions, intentions and emotions can be understood automatically.

Symptoms of autism include difficulties with social interaction -- including verbal and nonverbal communication -- imitation and empathy. The new findings dramatically bolster a growing body of evidence pointing to a breakdown of the brain’s mirror neuron system as the mechanism behind these autism symptoms.



"Our findings suggest that a dysfunctional mirror neuron system may underlie the social deficits observed in autism," said Mirella Dapretto, lead author and assistant professor in residence of psychiatry and biobehavioral sciences at the Semel Institute for Neuroscience and Human Behavior at UCLA and the David Geffen School of Medicine at UCLA. "Together with other recent data, our results provide strong support for a mirror neuron theory of autism. This is exciting because we finally have an account that can explain all core symptoms of this disorder."

Conducted at the Semel Institute’s Ahmanson-Lovelace Brain Mapping Center, the research used functional magnetic resonance imaging (fMRI) to measure brain activity in 10 high-functioning children with autism while they imitated and observed 80 photos depicting different emotions such as anger, fear, happiness or sadness. In addition, the brain activity of 10 typically developing children was studied while performing the same tasks.

Separately, symptom severity of each child with autism was tested using two independent measures (the Autism Diagnostic Observation Schedule -- Generic, and the Autism Diagnostic Interview).

The study shows that unlike typically developing children, children with autism have virtually no activity in the pars opercularis of the inferior frontal gyrus, identified by previous research as a key part of the mirror neuron system. Importantly, the level of mirror neuron activity seen in children with autism was inversely related to symptom severity in the social domain.

Children with autism also showed reduced activity in the emotion centers of the brain, consistent with the hypothesis that this mirroring mechanism may play a crucial role for understanding how others feel and for empathizing with them.

All of the children rehearsed the tasks prior to the fMRI scans to assure researchers they could perform the tasks. Both groups performed equally well. Normal brain activity in areas of the brain involving sight and facial movements indicated that the children with autism remained on task during the fMRI scans.

Dan Page | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>