Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research provides more evidence that chronic fatigue syndrome is a legitimate medical condition

02.12.2005


Syndrome linked to neurological abnormalities



Researchers at Georgetown University Medical Center have found that chronic fatigue syndrome (CFS) may be rooted in distinct neurological abnormalities that can be medically tested. Although the sample studied was small, this research provides objective, physiological evidence that the controversial disorder can be considered a legitimate medical condition.

Chronic fatigue syndrome defines a range of illnesses including fibromyalgia and Gulf War syndrome, all of which have fatigue as a major symptom. Even among medical professionals, there is a disagreement about the causes, diagnosis and treatment of CFS because so much about the disorder remains unknown. One reason CFS is difficult to diagnose is because it shares symptoms with many other diseases, including multiple sclerosis and lupus. Even when other illnesses are ruled out and a CFS diagnosis is given, there is not a standardized course of treatment and it’s difficult for doctors to measure patient improvement. Estimates are that two to four times as many women as men are diagnosed with CFS.


The Georgetown study, published in the November edition of the BMC Neurology Journal, an online publication, reveals that patients diagnosed with CFS and its family of illnesses have a set of proteins in their spinal cord fluid that were not detected in healthy individuals. These proteins might give insight into the causes of CFS and could someday be used as markers to diagnose patients with the disorder.

"For years, patients with chronic fatigue syndrome have suffered from painful symptoms for which there is no blood test, diagnosable physical condition or any method for doctors to measure improvement," said James Baraniuk, MD, assistant professor of medicine at Georgetown University Medical Center and first author on the study. "Our research provides initial evidence that chronic fatigue syndrome and its family of illnesses may be legitimate, neurological diseases and that at least part of the pathology involves the central nervous system."

The disorder is characterized by profound fatigue that is not improved by bed rest and that may get worse with physical or mental activity, according to the Centers for Disease Control and Prevention. Persons with CFS usually function at a lower level of activity than they were capable of before the onset of illness, feeling too tired to perform normal activities or easily exhausted with no apparent reason. Patients also report various nonspecific symptoms, including weakness, muscle pain, impaired memory and/or mental concentration, insomnia and post-exertional fatigue lasting more than 24 hours.

The study looked at 50 individuals suffering from at least two disorders related to CFS, including fibromyalgia and Gulf War syndrome. By examining spinal cord fluid in patients with CFS and in healthy individuals, the researchers found that CFS patients have 16 proteins that healthy individuals do not. Five of these 16 proteins are found in all patients with the illnesses but in none of the controls. The results indicate that those 16 proteins could possibly serve as a "biosignature" for the disease and could someday be used to diagnose CFS.

"Although this is a small study and more research on the subject is necessary, these results indicate it might be possible to develop a simple laboratory test to diagnose these disorders in the future," Baraniuk said.

Other co-authors on the paper include Begona Casada, PhD, and Hilda Maibach, MS, of Georgetown University Medical Center; Daniel J. Clauw, MD, of the University of Michigan; and Lewis K. Pannell, PhD, of the University of South Carolina; and Sonya Hess, PhD, of the National Institute of Diabetes and Digestive and Kidney Diseases.

Liz McDonald | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>