Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging Shows Similarities in Brains of Marijuana Smokers, Schizophrenics

01.12.2005


Heavy use of marijuana may put adolescents who are genetically predisposed to schizophrenia at greater risk of developing the brain disorder, according to research presented today at the annual meeting of the Radiological Society of North America (RSNA).



Using a sophisticated brain imaging technique called diffusion tensor imaging (DTI), researchers at Zucker Hillside Hospital in Glen Oaks, New York, studied the brains of groups of adolescents: healthy, non-drug users; heavy marijuana smokers (daily use for at least one year); and schizophrenic patients. Unlike magnetic resonance imaging (MRI), which provides a static picture of brain structures, DTI detects and measures the motion of water molecules in the brain, which can reveal microscopic abnormalities.

Manzar Ashtari, Ph.D., Sanjiv Kumra, M.D., and colleagues used DTI to examine the arcuate fasciculus, a bundle of fibers connecting the Broca’s area in the left frontal lobe and the Wernicke’s area in the left temporal lobe of the brain. The investigators found that repeated exposure to marijuana was related to abnormalities in the development of this fiber pathway, which is associated with the higher aspects of language and auditory functions.


"Because this language/auditory pathway continues to develop during adolescence, it is most susceptible to the neurotoxins introduced into the body through marijuana use," explained Dr. Ashtari, associate professor of radiology and psychiatry at New York’s Albert Einstein College of Medicine.

In the study, DTI was performed on 12 healthy, early adolescent males compared with 12 late adolescent males to show normal human brain development; 11 schizophrenic patients compared with 17 matched controls; 15 schizophrenic patients who smoke marijuana compared with 17 matched controls; and 15 marijuana smokers compared with 15 matched non-drug users. The scans revealed no abnormal developmental changes in the language pathway in the healthy adolescents, but showed abnormalities in both the marijuana users and schizophrenic patients.

"These findings suggest that in addition to interfering with normal brain development, heavy marijuana use in adolescents may also lead to an earlier onset of schizophrenia in individuals who are genetically predisposed to the disorder," said co-principal-investigator Sanjiv Kumra, M.D., assistant professor of psychiatry at Albert Einstein College of Medicine.

According to the National Institute on Drug Abuse, approximately 3.1 million Americans age 12 and older use marijuana on a daily or almost daily basis. In 2004, 5.6 percent of 12 th graders reported daily use of marijuana.

Schizophrenia is a chronic, severe and disabling brain disorder that affects about one percent of the entire population. Although the causes of the disease have not been determined, it is believed to result from a combination of environmental and genetic factors.

Drs. Ashtari and Kumra said longitudinal studies are needed to determine whether these changes in the brain are permanent or change over time. It is also important to mention that at this time, DTI and MRI are not diagnostic means for schizophrenia patients or marijuana smokers.

Co-authors are Jinghui Wu, B.S., Kelly Cervellione, M.A., John Kane, M.D., Philip Szeszko, Ph.D., and Babak Ardekani, Ph.D.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>