Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibacterial coatings cut infection rates

30.11.2005


Putting antibacterial coatings on hip and knee implants and biomedical devices such as catheters could cut infection rates following surgery and significantly reduce health care costs and improve quality of life for patients, researchers at the University of South Australia have found.



A significant number of hip and knee implants are prone to infection after surgery and in many cases are not amenable to treatment with antibiotics, according to Hans Griesser, Professor of Surface Science and Deputy Director of UniSA’s Ian Wark Research Institute.

"For patients in this situation it may be necessary to remove the implant from the infected site, cleanse the wound and undergo replacement surgery within a short time after original implantation, causing significant trauma, especially for the elderly," Professor Griesser said.


Catheters can also be a source of bacterial infections, which can spread from the skin to the incision for catheter insertion, and have been known to cause anaphylactic shock resulting in death, according to Professor Griesser. Hospitals combat this problem by removing and replacing catheters at frequent intervals, and at considerable cost to the health care system.

"Another significant problem caused by bacterial contamination of medical devices is bacteria that settle on contact lenses and cause inflammation and, more rarely, infections," Professor Griesser said.

Researchers at The WarkTM are developing nanometre thin coatings for biomedical implants and biomedical devices that prevent bacterial colonisation of implants that result in septic inflammation problems.

"We are using molecules called furanones, which are derived from natural chemicals originally extracted from Australian macro algae seaweed that grows off the eastern coast. The chemicals produced by these macro algae were found to prevent the colonisation of microbial organisms such as bacteria and fungi on their surfaces, helping to keep the algae clean. Researchers at the University of New South Wales developed synthetic analogues of the natural compounds and discovered that these chemicals also keep synthetic surfaces clean when placed on those surfaces in a marine environment. This provided the impetus for studying their use in biomedical device applications," Professor Griesser said.

Furanones have a unique advantage in that they act differently to other antibiotics. Unlike antibiotics, they don’t kill bacteria. This means that the furanone compounds should not cause bacterial resistance, according to microbiologists.

"When bacteria sit on the surface, they first anchor themselves individually and then send out signalling molecules called homoserine lactones to other bacteria, which do the same, talking to each other via these signalling molecules until they reach sufficient density as a group on the surface. The bacteria then change their metabolism and start producing a slimy biofilm that protects them from antibiotics. Sitting under the protective biofilm, the bacteria multiply and grow, and that’s what causes infection," Professor Griesser said.

Professor Griesser likens this process, called quorum sensing, to the example of soccer hooligans who on their own are quite ineffective but when they group together, can be a powerful force that creates havoc of disastrous proportions.

It’s the furanones that come to the rescue by irreversibly switching off the bacterial signalling mechanism. Without the signal, the bacteria think that they are alone; they don’t start producing the biofilm and eventually die on the surface.

"We attach the furanones by covalent bonding to our biomedical devices. We stress covalent bonding because it is important that we anchor them very firmly to the surface, making it impossible for them to break away and travel into remote organs such as the brain or liver," Professor Griesser said.

UniSA PhD student in applied science (minerals and materials), Sameer Al-Bataineh, has developed a fundamental understanding of the antibacterial coatings and how to make them. Using model substrates made from metal and plastics, he developed methods for attaching the furanones, and analysing their surface properties and chemical composition to get a detailed understanding of how they are best applied.

Al-Bataineh’s research has been supervised principally by Professor Griesser and co-supervisor Dr Leanne Britcher at The WarkTM, with co-supervision by microbiologist Professor Mark Willcox from the Vision Cooperative Research Centre at the University of New South Wales, where he and Dr Hua Zhu assessed the antimicrobial efficiency of the coatings.

"The result is a good understanding of how the coatings work and in which way we can make them work for best effect. We have established recipes for practical applications of the furanone coatings onto different devices. We now have a very good basis for tailoring these coatings towards particular biomedical devices and are using this knowledge to work with Sydney-based company, Biosignal Limited, to develop antibacterial contact lenses," Professor Griesser said.

"This is an excellent example of where we can apply fundamental knowledge gained in a PhD towards commercial applications that we believe will have health benefits for a significant number of people. If we can apply this to biomedical implants and other biomedical devices, we will have a major impact on the health of the nation and the cost benefits will be enormous."

Geraldine Hinter | EurekAlert!
Further information:
http://www.unisa.edu.au
http://www.unisa.edu.au/mdu/media/expert.asp

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>