Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCSD Research May Lead to Targeted Treatment for Asthma Sufferers


The bronchial tubes of a patient with severe asthma can become scarred due to repeated episodes of allergic inflammation in the airways. The scarring results in blocked airways, excessive production of mucus, and shortness of breath.

Researchers at the University of California, San Diego (UCSD) School of Medicine have discovered that when a single gene – IKK beta – is selectively inactivated in the membrane-lining cells of the bronchial tubes of mice that later inhale allergens, such scarring, mucus production and airway inflammation is significantly reduced.

David H. Broide, M.B.,Ch.B., Professor in UCSD’s Department of Medicine, and Michael Karin, Ph.D., Professor in UCSD’s Department of Pharmacology and the Laboratory of Gene Regulation and Signal Transduction, will publish their findings in the December 6 issue of the Proceedings of the National Academy of Sciences.

“This finding is significant because it suggests that if we can produce a drug that inhibits IKK beta – for example, a drug that is inhaled to target only the patient’s bronchial tubes and not their immune cells – then the scarring, inflammation, and mucus production in asthma could be significantly reduced,” said Broide.

IKK beta is a master regulator gene that is expressed in cells throughout the body including cells lining the bronchial tubes and immune cells, which are needed to fight infection. Through its effects on the transcription factor NF-kB, IKK beta also regulates the expression of many additional genes important to the induction of airway inflammation in asthma.

Using gene-targeting strategies, the UCSD team selectively inactivated the IKK beta gene only in the mouse airway membrane-lining cells, called epithelial cells, but not in other cells outside the airway that also express the gene, such as immune cells. The researchers were able to demonstrate that mice lacking the IKK beta gene in these lining cells had significantly less airway inflammation, mucus production and scarring of bronchial tubes after repeatedly inhaling an allergen.

The researchers set out to explore selective inactivation of IKK beta in the airway because blocking IKK beta throughout the body to prevent the damaging effects of asthma could also suppress the patient’s immune system, resulting in infections.

“An inhaled IKK beta antagonist could theoretically be designed that would not be absorbed into the blood stream, where it would affect the patient’s immune cell function. Such a selective targeting of the drug to the airway would be able to reduce airway inflammation, mucus production, and scarring of the bronchial tubes, with reduced potential for negative side effects.” said Broide.

While only about 10 percent of asthma patients have severe symptoms which lead to scarring of the bronchial tubes, new therapies to prevent scarring are needed, since these patients account for about half of the health costs associated with asthma. As patients with Chronic Obstructive Pulmonary Disease also suffer from mucus production and scarring of their lungs, an inhaled IKK beta antagonist could potentially prove beneficial in such patients.

This research was funded by a National Institutes of Health grant from the National Institute of Allergy and Infectious Diseases, and a grant from the Sandler Program for Asthma Research. Additional contributors to the paper include members of the Broide Laboratory, Jae Youn Cho, M.D., Ph,D,; Marina Miller, M.D., Ph.D.; Taylor Doherty, M.D.; Kirsti McElwain, B.S.; and Shauna McElwain, B.S., and Toby Lawrence, Ph.D. a visiting scientist in the Karin laboratory.

Debra Kain | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

More VideoLinks >>>