Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Research May Lead to Targeted Treatment for Asthma Sufferers

30.11.2005


The bronchial tubes of a patient with severe asthma can become scarred due to repeated episodes of allergic inflammation in the airways. The scarring results in blocked airways, excessive production of mucus, and shortness of breath.



Researchers at the University of California, San Diego (UCSD) School of Medicine have discovered that when a single gene – IKK beta – is selectively inactivated in the membrane-lining cells of the bronchial tubes of mice that later inhale allergens, such scarring, mucus production and airway inflammation is significantly reduced.

David H. Broide, M.B.,Ch.B., Professor in UCSD’s Department of Medicine, and Michael Karin, Ph.D., Professor in UCSD’s Department of Pharmacology and the Laboratory of Gene Regulation and Signal Transduction, will publish their findings in the December 6 issue of the Proceedings of the National Academy of Sciences.


“This finding is significant because it suggests that if we can produce a drug that inhibits IKK beta – for example, a drug that is inhaled to target only the patient’s bronchial tubes and not their immune cells – then the scarring, inflammation, and mucus production in asthma could be significantly reduced,” said Broide.

IKK beta is a master regulator gene that is expressed in cells throughout the body including cells lining the bronchial tubes and immune cells, which are needed to fight infection. Through its effects on the transcription factor NF-kB, IKK beta also regulates the expression of many additional genes important to the induction of airway inflammation in asthma.

Using gene-targeting strategies, the UCSD team selectively inactivated the IKK beta gene only in the mouse airway membrane-lining cells, called epithelial cells, but not in other cells outside the airway that also express the gene, such as immune cells. The researchers were able to demonstrate that mice lacking the IKK beta gene in these lining cells had significantly less airway inflammation, mucus production and scarring of bronchial tubes after repeatedly inhaling an allergen.

The researchers set out to explore selective inactivation of IKK beta in the airway because blocking IKK beta throughout the body to prevent the damaging effects of asthma could also suppress the patient’s immune system, resulting in infections.

“An inhaled IKK beta antagonist could theoretically be designed that would not be absorbed into the blood stream, where it would affect the patient’s immune cell function. Such a selective targeting of the drug to the airway would be able to reduce airway inflammation, mucus production, and scarring of the bronchial tubes, with reduced potential for negative side effects.” said Broide.

While only about 10 percent of asthma patients have severe symptoms which lead to scarring of the bronchial tubes, new therapies to prevent scarring are needed, since these patients account for about half of the health costs associated with asthma. As patients with Chronic Obstructive Pulmonary Disease also suffer from mucus production and scarring of their lungs, an inhaled IKK beta antagonist could potentially prove beneficial in such patients.

This research was funded by a National Institutes of Health grant from the National Institute of Allergy and Infectious Diseases, and a grant from the Sandler Program for Asthma Research. Additional contributors to the paper include members of the Broide Laboratory, Jae Youn Cho, M.D., Ph,D,; Marina Miller, M.D., Ph.D.; Taylor Doherty, M.D.; Kirsti McElwain, B.S.; and Shauna McElwain, B.S., and Toby Lawrence, Ph.D. a visiting scientist in the Karin laboratory.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>