Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Research May Lead to Targeted Treatment for Asthma Sufferers

30.11.2005


The bronchial tubes of a patient with severe asthma can become scarred due to repeated episodes of allergic inflammation in the airways. The scarring results in blocked airways, excessive production of mucus, and shortness of breath.



Researchers at the University of California, San Diego (UCSD) School of Medicine have discovered that when a single gene – IKK beta – is selectively inactivated in the membrane-lining cells of the bronchial tubes of mice that later inhale allergens, such scarring, mucus production and airway inflammation is significantly reduced.

David H. Broide, M.B.,Ch.B., Professor in UCSD’s Department of Medicine, and Michael Karin, Ph.D., Professor in UCSD’s Department of Pharmacology and the Laboratory of Gene Regulation and Signal Transduction, will publish their findings in the December 6 issue of the Proceedings of the National Academy of Sciences.


“This finding is significant because it suggests that if we can produce a drug that inhibits IKK beta – for example, a drug that is inhaled to target only the patient’s bronchial tubes and not their immune cells – then the scarring, inflammation, and mucus production in asthma could be significantly reduced,” said Broide.

IKK beta is a master regulator gene that is expressed in cells throughout the body including cells lining the bronchial tubes and immune cells, which are needed to fight infection. Through its effects on the transcription factor NF-kB, IKK beta also regulates the expression of many additional genes important to the induction of airway inflammation in asthma.

Using gene-targeting strategies, the UCSD team selectively inactivated the IKK beta gene only in the mouse airway membrane-lining cells, called epithelial cells, but not in other cells outside the airway that also express the gene, such as immune cells. The researchers were able to demonstrate that mice lacking the IKK beta gene in these lining cells had significantly less airway inflammation, mucus production and scarring of bronchial tubes after repeatedly inhaling an allergen.

The researchers set out to explore selective inactivation of IKK beta in the airway because blocking IKK beta throughout the body to prevent the damaging effects of asthma could also suppress the patient’s immune system, resulting in infections.

“An inhaled IKK beta antagonist could theoretically be designed that would not be absorbed into the blood stream, where it would affect the patient’s immune cell function. Such a selective targeting of the drug to the airway would be able to reduce airway inflammation, mucus production, and scarring of the bronchial tubes, with reduced potential for negative side effects.” said Broide.

While only about 10 percent of asthma patients have severe symptoms which lead to scarring of the bronchial tubes, new therapies to prevent scarring are needed, since these patients account for about half of the health costs associated with asthma. As patients with Chronic Obstructive Pulmonary Disease also suffer from mucus production and scarring of their lungs, an inhaled IKK beta antagonist could potentially prove beneficial in such patients.

This research was funded by a National Institutes of Health grant from the National Institute of Allergy and Infectious Diseases, and a grant from the Sandler Program for Asthma Research. Additional contributors to the paper include members of the Broide Laboratory, Jae Youn Cho, M.D., Ph,D,; Marina Miller, M.D., Ph.D.; Taylor Doherty, M.D.; Kirsti McElwain, B.S.; and Shauna McElwain, B.S., and Toby Lawrence, Ph.D. a visiting scientist in the Karin laboratory.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>