Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bionic fiction becomes science fact…

24.11.2005


A highly dexterous, bio-inspired artificial hand and sensory system that could provide patients with active feeling, is being developed by a European project.



Funded by the Future and Emerging Technologies initiative of the IST programme, the CYBERHAND project aims to hard wire this hand into the nervous system, allowing sensory feedback from the hand to reach the brain, and instructions to come from the brain to control the hand, at least in part.

Coordinated by Professor Paolo Dario with Professor Maria Chiara Carrozza leading the development of the hand, the project united researchers from Germany, Spain, Italy and Denmark.


So far, the project is racking up an impressive list of achievements. It has a complete, fully sensitised five-fingered hand. The CYBERHAND prototype has 16 Degrees of Freedom (DoFs) made possible by the work of six tiny motors.

Each of the five fingers is articulated and has one motor dedicated to its joint flexing for autonomous control. It features that miracle of evolution, the opposable thumb, so the device can perform different grasping actions.

Taking inspiration from the real hand, where a muscle pulls a tendon inside a synovial sheath, CYBERHAND’s finger cables run through a Teflon sheath pulled by a DC motor. So the proximal, medial and distal phalanges, those bones between your finger knuckles, are all driven by the same tendon. This approach is called underactuation as there are more Degrees of Freedom than Degrees of Movement (motors); it means the prosthesis has a self-adaptive grasp.

"This is a fundamental feature of the CYBERHAND prosthesis because only a limited number of control signals are available for user’s voluntary control," says project manager, Dr Lucia Beccai. Importantly, it also means less user effort is required to control the hand during daylong use.

The CYBERHAND prototype integrates the two types of human senses. One senses where parts of the body are relative to other parts, whether our fingers are open or closed, for example. The other relates to taste, touch, sound, hearing and sight that tell us about the external world. CYBERHAND includes sensors for tension, force, joint angle, end stroke and contact in the final prototype.

This prototype uses Longitudinal IntraFascicular Electrodes (LIFEs) to connect the hand to the nervous system. Within the CYBERHAND project, in addition to traditional wire LIFEs, a new type of electrode has been developed to improve performance and make them less invasive in humans: the Thin Film LIFE (tfLIFE).

So far, the project has produced excellent science and engineering to create an impressive prototype. The next step is to test the device in humans.

Currently researchers are addressing all necessary medical and ethical issues for implantation in human volunteers. A clinical partner has been identified and the Local Ethical Committee has given the approval for the clinical validation of CYBERHAND system, which should begin in 2006.

Some companies have expressed interest in commercialising the system. Nevertheless, it could be five to eight years before the device clears all the tests necessary to prove its safety, usability, and robustness.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>