Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bionic fiction becomes science fact…

24.11.2005


A highly dexterous, bio-inspired artificial hand and sensory system that could provide patients with active feeling, is being developed by a European project.



Funded by the Future and Emerging Technologies initiative of the IST programme, the CYBERHAND project aims to hard wire this hand into the nervous system, allowing sensory feedback from the hand to reach the brain, and instructions to come from the brain to control the hand, at least in part.

Coordinated by Professor Paolo Dario with Professor Maria Chiara Carrozza leading the development of the hand, the project united researchers from Germany, Spain, Italy and Denmark.


So far, the project is racking up an impressive list of achievements. It has a complete, fully sensitised five-fingered hand. The CYBERHAND prototype has 16 Degrees of Freedom (DoFs) made possible by the work of six tiny motors.

Each of the five fingers is articulated and has one motor dedicated to its joint flexing for autonomous control. It features that miracle of evolution, the opposable thumb, so the device can perform different grasping actions.

Taking inspiration from the real hand, where a muscle pulls a tendon inside a synovial sheath, CYBERHAND’s finger cables run through a Teflon sheath pulled by a DC motor. So the proximal, medial and distal phalanges, those bones between your finger knuckles, are all driven by the same tendon. This approach is called underactuation as there are more Degrees of Freedom than Degrees of Movement (motors); it means the prosthesis has a self-adaptive grasp.

"This is a fundamental feature of the CYBERHAND prosthesis because only a limited number of control signals are available for user’s voluntary control," says project manager, Dr Lucia Beccai. Importantly, it also means less user effort is required to control the hand during daylong use.

The CYBERHAND prototype integrates the two types of human senses. One senses where parts of the body are relative to other parts, whether our fingers are open or closed, for example. The other relates to taste, touch, sound, hearing and sight that tell us about the external world. CYBERHAND includes sensors for tension, force, joint angle, end stroke and contact in the final prototype.

This prototype uses Longitudinal IntraFascicular Electrodes (LIFEs) to connect the hand to the nervous system. Within the CYBERHAND project, in addition to traditional wire LIFEs, a new type of electrode has been developed to improve performance and make them less invasive in humans: the Thin Film LIFE (tfLIFE).

So far, the project has produced excellent science and engineering to create an impressive prototype. The next step is to test the device in humans.

Currently researchers are addressing all necessary medical and ethical issues for implantation in human volunteers. A clinical partner has been identified and the Local Ethical Committee has given the approval for the clinical validation of CYBERHAND system, which should begin in 2006.

Some companies have expressed interest in commercialising the system. Nevertheless, it could be five to eight years before the device clears all the tests necessary to prove its safety, usability, and robustness.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

New High-Performance Center Translational Medical Engineering

26.04.2017 | Health and Medicine

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>