Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn research permits first-ever visualization of psychological stress in the human brain

23.11.2005


New application of fMRI technique may help physicians better diagnose and treat the effects of stress





Using a novel application of an fMRI (functional magnetic resonance imaging) technique, researchers at the University of Pennsylvania School of Medicine have, for the first time, visualized the effects of everyday psychological stress in a healthy human brain. Their work, performed at Penn’s Center for Functional Neuroimaging, provides a neuro-imaging marker of psychological stress -- which will pave the way for the development of improved strategies for preventing or correcting the long-term health consequences of chronic stress. The researchers’ study appears in the November 21 online edition of Proceedings of the National Academy of Sciences.

In the Penn study, researchers induced stress on healthy subjects by asking them to quickly tackle challenging mental exercises while being monitored for performance. During the fMRI scans, the researchers also recorded subjects’ emotional responses -- such as stress, anxiety, and frustration -- and measured the corresponding changes in stress hormone and heart rate. Many subjects described themselves as being "flustered, distracted, rushed and upset" by the stress task.


The results showed increased cerebral blood-flow during the "stress test" in the right anterior portion of the brain (prefrontal cortex) -- an area long associated with anxiety and depression. More interestingly, the increased cerebral blood-flow persisted even when the testing was complete. These results suggest a strong link between psychological stress and negative emotions. On the other hand, the prefrontal cortex is also associated with the ability to perform executive functions -- such as working memory and goal-oriented behavior -- that permit humans to adapt to environmental challenges and threats. "The message from this study is that while stress may be useful in increasing focus, chronic stress could also be detrimental to mental health," concludes Jiongjiong Wang, PhD, Assistant Professor of Radiology and principal investigator of the study.

"How the brain reacts under psychological stress is an untouched subject for cognitive neuroscientists, but it is certainly a critical piece of the puzzle in understanding the health effects of stress," adds Wang. "Our findings should help significantly advance our understanding of this process."

To date, most fMRI studies have indirectly measured changes in cerebral blood-flow and metabolism induced by neural activation, using a technique that is sensitive to the oxygenation levels in blood. "The fMRI technique employed in our study – arterial spin labeling – can measure cerebral flood-flow directly," states John A. Detre, MD, Associate Professor of Neurology and Radiology, and senior author of the study. "This technique is very similar to PET (positron emission tomography) scanning, except that it’s entirely non-invasive – without the need for injections or radioactivity. In this elegant technique, water molecules in subjects’ own blood are ’tagged’ by the magnet and used as the natural contrast agent to measure cerebral blood-flow." Researchers at Penn’s Center for Functional Neuroimaging have been at the forefront of the development of this technique, and its applications to imaging brain-function during cognitive and emotional processes.

The study was sponsored by grants from the National Science Foundation, the National Institutes of Health, and the U.S. Air Force. In addition to Drs. Wang and Detre, the team of investigators included Penn researchers Hengyi Rao, Gabriel S. Wetmore, Patricia M. Furlan, Marc Korczykowski, and David F. Dinges.

About PENN Medicine:

PENN Medicine is a $2.7 billion enterprise dedicated to the related missions of medical education, biomedical research, and high-quality patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation’s first medical school) and the University of Pennsylvania Health System.

Penn’s School of Medicine is ranked #2 in the nation for receipt of NIH research funds; and ranked #4 in the nation in U.S. News & World Report’s most recent ranking of top research-oriented medical schools. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System includes three hospitals [Hospital of the University of Pennsylvania, which is consistently ranked one of the nation’s few "Honor Roll" hospitals by U.S. News & World Report; Pennsylvania Hospital, the nation’s first hospital; and Penn Presbyterian Medical Center]; a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home care and hospice.

Olivia Fermano | EurekAlert!
Further information:
http://www.cfn.upenn.edu
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>