Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Imperial receives Gates Foundation grant to develop new tests for managing AIDS treatment in developing countries


Imperial College London has received a £4.9 ($8.6) million grant from the Bill & Melinda Gates Foundation to develop a simple, affordable and rapid test to measure the health of the immune system in HIV/AIDS patients in developing countries.

The ‘CD4 Initiative’ will develop an easy to use device which can measure CD4+ T-lymphocytes in HIV+ patients. The CD4 cell count measures the number of these critical disease-fighting cells in the blood, a figure which health care workers need in order to make key clinical decisions in managing HIV disease, such as when to begin or to switch antiretroviral therapy.

Current technologies for measuring CD4 counts are expensive to buy and maintain, and require a level of infrastructure and training which is often not available in many developing countries. The CD4 Initiative will develop new tests that are more appropriate for these countries based on specifications developed with health care workers in hospitals and clinics in Africa and elsewhere in the developing world.

Professor Stephen Smith, Principal of the Faculty of Medicine at Imperial College London, said: “Despite the burden of HIV/AIDS on the developing world, many of the diagnostic tools are just not accessible there due to the high cost and complexity of use. This initiative will help develop new, simple, rapid, robust and affordable tools and help remove one important barrier to the effective implementation of AIDS care in these countries.”

The principal investigator, Dr. Hans George Batz, together with the Imperial-based team will manage an R&D programme to develop these much needed diagnostics. Dr. Batz is a former Senior Vice President of Research and Development at Roche Diagnostics and has been involved with the development of the initiative for the past two years. Dr. Batz will be supported by an international steering committee of experts, a small staff and the Imperial College’s liaison to the project, Dr. Wendy Ewart. The initiative will take a project management approach, common in industry, in which multiple research teams around the world from academia, private companies and other institutions will work collaboratively under the leadership of Dr. Batz and with strict milestones and timelines to achieve.

A Research Funding Agreement for interested test developers and researchers for the CD4 Initiative will be issued in spring 2006. Inquiries about the project can be made to

Gregg Gonsalves, from Gay Men’s Health Crisis in New York City, and who was instrumental in the establishment of the initiative, praised the Bill & Melinda Gates Foundation and Imperial College: “The CD4 Initiative is providing a bold new solution to this key problem in public health by bringing together the know-how in product development from industry with the creativity of scientists from all quarters to bring a product to the field more quickly than could be done otherwise. Healthcare workers from developing countries have been clamouring for point-of-care assays for measuring CD4 counts for several years now as management of antiretroviral therapy is difficult without these tests. We are elated that Dr. Batz, Imperial College and the Bill & Melinda Gates Foundation are responding to these urgent pleas for help.”

Tony Stephenson | alfa
Further information:

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>