Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic probe successfully tracks implanted cells in cancer patients

21.11.2005


Technique shows that injection accuracy is critical, but not perfect



By using MRI to detect magnetic probes of tiny iron oxide particles, an international research team for the first time has successfully tracked immune-stimulating cells implanted into cancer patients for treatment purposes.

"In four of the eight patients, MRI revealed that the implanted cells weren’t where they needed to be to be effective for treatment," says Jeff Bulte, Ph.D., an associate professor of radiology at Hopkins’ Institute for Cell Engineering who developed methods to optimally label cells with the clinically approved iron oxide particles.


This new application of the probes -- already clinically approved for MRI scanning of the liver -- could dramatically improve efforts to test and use cellular therapies such as vaccines to treat cancer or prevent its recurrence or stem cells to repair damaged organs, say the researchers.

Bulte and a team of Dutch researchers used MRI and a magnetic probe approved by both European and U.S. agencies to locate therapeutic cells injected into eight melanoma patients.

"Our results show that the MRI-based technique was more accurate than tracking the cells using radioactivity and that ultrasound failed to accurately guide injection of the cells into lymph nodes in half of the patients," says Bulte, an author on the report, which appears in the November issue of Nature Biotechnology.

The cells used in the current study, so-called dendritic cells, are the immune system’s own "most wanted posters" because they take up and display foreign proteins that tell the immune system’s fighters what cells to look for and destroy.

Since the mid-1990s, clinical trials have been testing dendritic cells to see whether they can stimulate the immune system to kill cancer cells. In these trials, dendritic cells from patients are exposed to proteins from the patients’ cancer cells and then returned to the patients.

However, some of the clinical trials of such "cancer vaccines" have been disappointing, with some patients responding very well but others not at all. A critical issue behind each patient’s success on the treatment, however, is whether the cells get to the lymph nodes, where the immune system’s fighters are normally "trained" by dendritic cells. Until now, there’s been no accurate way to know where the cells end up.

It’s thought, but not proven, that the best way to get the cells where they need to be is to inject them directly into the lymph nodes that drain the area containing a tumor. Currently, doctors use ultrasound to guide the needle, and dendritic cells carrying a radioactive tag are sometimes used to try to double-check the cells’ final resting place.

However, in this study, the Dutch team discovered that using MRI and iron oxide particles was able to track the cells’ location much more accurately than the radioactive tracking method and provided anatomic detail simultaneously -- structural detail not possible by tracking radioactivity.

"On the MR images, we can see the lymph nodes, and we can see the magnetically labeled dendritic cells, and we can tell very clearly whether they are in the same place," says the study’s first author, Jolanda de Vries, an assistant professor at the Nijmegen Center for the Molecular Life Sciences (NCMLS) of the Radboud University Nijmegen Medical Center in The Netherlands. "The cells can’t get from the fat into the lymph nodes by themselves, so injecting them properly is very important."

Bulte says he, Dara Kraitchman, Ph.D., D.V.M., and colleagues at Hopkins are already testing magnetically labeled stem cells with MRI-compatible injection systems to allow MRI guidance of injection in large animals.

The current clinical trial builds on Bulte’s earlier work tracking magnetically labeled cells in animals. Four years ago, he and colleagues reported that stem cells containing so-called magnetodendrimers could be followed by MRI.

But to advance to clinical trials, the research team switched from the experimental magnetic tags to formulations of iron oxide already approved for clinical use in Europe (as Endorem) and the United States (as Feridex). Because immature dendritic cells naturally take up materials around them, they simply absorbed, or ingested, the iron oxide particles when exposed to them in the lab. The magnetically labeled, cancer-primed cells were then returned to the patients, all of whom had stage III melanoma.

"Although dendritic cell therapy is used in clinical trials to treat patients with melanoma, in this study we wanted to see whether the magnetically labeled cells could be tracked by MRI, to study their migratory behavior in more detail," says Carl Figdor, principal investigator of the study, of the NCMLS. "We were very pleased that they showed up clearly. With the anatomic information from the MRI, we could see precisely where they were -- inside or outside of the lymph nodes."

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>