Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find nanoparticle shows promise in reducing radiation side effects

16.11.2005


Using transparent zebrafish embryos, researchers at Jefferson Medical College have shown that a microscopic nanoparticle can help fend off damage to normal tissue from radiation. The nanoparticle, a soccer ball-shaped, hollow, carbon-based structure known as a fullerene, acts like an "oxygen sink," binding to dangerous oxygen radicals produced by radiation.



The scientists, led by Adam Dicker, M.D., Ph.D., associate professor of radiation oncology at Jefferson Medical College of Thomas Jefferson University in Philadelphia and at Jefferson’s Kimmel Cancer Center, and Ulrich Rodeck, M.D., professor of dermatology at Jefferson Medical College, see fullerenes as a potentially "new class of radioprotective agents."

They present their team’s results November 15, 2005 at the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics in Philadelphia.


While chemotherapy and radiotherapy are the standard treatments for cancer, they take their respective toll on the body. Radiation can damage epithelial cells and lead to permanent hair loss, among other effects, and certain types of systemic chemotherapy can produce hearing loss and damage to a number of organs, including the heart and kidneys. Some other side effects include esophagitis, diarrhea, and mouth and intestinal ulcers.

Only one drug, Amifostine, has been approved to date by the federal Food and Drug Administration, to help protect normal tissue from the side effects of chemotherapy and radiation, and researchers would like to develop new and improved agents.

Dr. Dicker and his group were exploring the molecular mechanisms responsible for cellular damage from radiation. They collaborated with a Houston-based drug company, C Sixty, and its radiation-protective agent, CD60_DF1.

To test how well it worked, they turned to tiny zebrafish embryos, which are transparent and allow scientists to closely observe damage produced by cancer treatments to organs. Zebrafish usually have most of their organs formed by day three of life.

They gave the embryos different doses of ionizing radiation as well as treatment by either Amifostine, which acted as a control agent, or CD60_DF1. They found that CD60_DF1 given before and even immediately after – up to 30 minutes – exposure to X-rays reduced organ damage by one-half to two-thirds, which was as good as the level of protection given by Amifostine.

"We also showed that the fullerene provided organ-specific protection," Dr. Dicker notes. "It protected the kidney from radiation-induced damage, for example, as well as certain parts of the nervous system."

He explains that one way that radiation frequently damages cells and tissues is by producing "reactive oxygen species" – oxygen radicals, peroxides and hydroxyls. The research team showed that zebrafish embryos exposed to ionizing radiation had more than 50 percent fewer reactive oxygen species compared to untreated embryos.

He says that the company also has technology enabling certain molecules to be attached to the nanoparticles, which will allow targeting to specific organs and tissues.

Next, Dr. Dicker and his colleagues would like to plan studies looking at another animal model system to find out if fullerene not only protects the entire animal from radiation, but to also examine organ-specific effects, such as protecting the lungs, for example. They also are interested in exploring its ability to prevent some of the long-term side effects of radiation, such as fibrosis in the leg. He and his co-workers also want to determine better ways to target the agent to protect specific tissues and organs.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>