Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find nanoparticle shows promise in reducing radiation side effects

16.11.2005


Using transparent zebrafish embryos, researchers at Jefferson Medical College have shown that a microscopic nanoparticle can help fend off damage to normal tissue from radiation. The nanoparticle, a soccer ball-shaped, hollow, carbon-based structure known as a fullerene, acts like an "oxygen sink," binding to dangerous oxygen radicals produced by radiation.



The scientists, led by Adam Dicker, M.D., Ph.D., associate professor of radiation oncology at Jefferson Medical College of Thomas Jefferson University in Philadelphia and at Jefferson’s Kimmel Cancer Center, and Ulrich Rodeck, M.D., professor of dermatology at Jefferson Medical College, see fullerenes as a potentially "new class of radioprotective agents."

They present their team’s results November 15, 2005 at the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics in Philadelphia.


While chemotherapy and radiotherapy are the standard treatments for cancer, they take their respective toll on the body. Radiation can damage epithelial cells and lead to permanent hair loss, among other effects, and certain types of systemic chemotherapy can produce hearing loss and damage to a number of organs, including the heart and kidneys. Some other side effects include esophagitis, diarrhea, and mouth and intestinal ulcers.

Only one drug, Amifostine, has been approved to date by the federal Food and Drug Administration, to help protect normal tissue from the side effects of chemotherapy and radiation, and researchers would like to develop new and improved agents.

Dr. Dicker and his group were exploring the molecular mechanisms responsible for cellular damage from radiation. They collaborated with a Houston-based drug company, C Sixty, and its radiation-protective agent, CD60_DF1.

To test how well it worked, they turned to tiny zebrafish embryos, which are transparent and allow scientists to closely observe damage produced by cancer treatments to organs. Zebrafish usually have most of their organs formed by day three of life.

They gave the embryos different doses of ionizing radiation as well as treatment by either Amifostine, which acted as a control agent, or CD60_DF1. They found that CD60_DF1 given before and even immediately after – up to 30 minutes – exposure to X-rays reduced organ damage by one-half to two-thirds, which was as good as the level of protection given by Amifostine.

"We also showed that the fullerene provided organ-specific protection," Dr. Dicker notes. "It protected the kidney from radiation-induced damage, for example, as well as certain parts of the nervous system."

He explains that one way that radiation frequently damages cells and tissues is by producing "reactive oxygen species" – oxygen radicals, peroxides and hydroxyls. The research team showed that zebrafish embryos exposed to ionizing radiation had more than 50 percent fewer reactive oxygen species compared to untreated embryos.

He says that the company also has technology enabling certain molecules to be attached to the nanoparticles, which will allow targeting to specific organs and tissues.

Next, Dr. Dicker and his colleagues would like to plan studies looking at another animal model system to find out if fullerene not only protects the entire animal from radiation, but to also examine organ-specific effects, such as protecting the lungs, for example. They also are interested in exploring its ability to prevent some of the long-term side effects of radiation, such as fibrosis in the leg. He and his co-workers also want to determine better ways to target the agent to protect specific tissues and organs.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>