Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain scan, cerebrospinal fluid analysis may help predict Alzheimer’s disease


A combination of brain scanning with a new imaging agent and cerebrospinal fluid (CSF) analysis has left neuroscientists encouraged that they may finally be moving toward techniques for diagnosing Alzheimer’s disease before its clinical symptoms become apparent. "When clinical symptoms start, the disease process has already been at work in the patient for many years and possibly even decades," explains Anne Fagan Niven, Ph.D., research associate professor of neurology at Washington University School of Medicine in St. Louis. "Up to 30 percent of neurons in vulnerable areas are already dead, and you can’t get them back. So finding markers that can help us identify patients prior to symptoms is really our big push now."

With colleagues Mark Mintun, M.D., professor of radiology, and David Holtzman, M.D., the Andrew B. and Gretchen P. Jones Professor and head of the Department of Neurology, Fagan studied a group of 24 people that included individuals diagnosed with very mild and mild Alzheimer’s disease, and cognitively normal subjects. As expected, in patients with cognitive impairments, believed to be attributable to Alzheimer’s disease, researchers found low CSF levels of amyloid beta 42 (A-beta 42), the principal ingredient of the brain plaques that are characteristic of Alzheimer’s disease. In the same individuals, brain scans with a new imaging agent that reveals the presence of amyloid plaques in the brain were positive. What scientists didn’t anticipate was that three cognitively normal subjects would have both low CSF levels of A-beta 42 and positive results from the brain scans. Fagan stressed that although this aspect of their findings was very intriguing, it doesn’t prove that the three normal subjects will one day develop clinical Alzheimer’s disease.

"For now, definitive diagnosis of Alzheimer’s disease still cannot be made until autopsy," she says. "It’s going to take a number of years for us to fully assess these results, because all we can do now is follow the participants closely to see if they eventually develop Alzheimer’s dementia." Fagan presents the results of the study at 10:15 a.m. on Nov. 15 at this year’s annual meeting of the Society for Neuroscience in Washington, D.C. The study will also appear in an upcoming issue of Annals of Neurology. Many prior studies have found that A-beta 42 levels drop in the cerebrospinal fluid of Alzheimer’s disease patients. A-beta 42 is naturally produced in the brain, and researchers suspect that the creation of amyloid plaques may be linked to breakdowns of the processes that degrade or normally clear A-beta 42 from the brain via the CSF and the bloodstream.

However, natural variations occur in CSF A-beta 42 levels in healthy subjects, and the amount this level drops in Alzheimer’s patients also varies. And that left no distinct level scientists could identify as a diagnostic marker characteristic of Alzheimer’s disease. Fagan wanted to see if useful distinctions could be made by combining data on CSF A-beta 42 levels with results from brain scans with a new imaging agent, PIB (for Pittsburgh compound B). Developed by researchers at the University of Pittsburgh, PIB temporarily sticks to amyloid plaques in the brain but washes clean in 30 to 60 minutes. Scientists can detect this sticking with a PET scanner. Using PIB data available from ongoing studies of research volunteers at the Memory and Aging Project at the Alzheimer’s Disease Research Center at Washington University, Fagan compared PIB scan results and levels of CSF A-beta 42.

"When I realized that everyone who was PIB positive also had lower CSF A-beta 42 levels, I had one of those ’aha!’ moments that makes it so exciting to be a scientist," Fagan says. Other CSF factors, such as levels of another form of A-beta and of a molecule found in the brain cell tangles created by Alzheimer’s disease, did not correlate with positive PIB scan results. "The hope is that 10-20 years from now, we’ll give people a PIB scan, draw and analyze their CSF, and combine that with other factors to get a global score for their personal risk of Alzheimer’s disease," Fagan says. "We have disease-modifying treatments on the way to clinical trials right now, and tests that can help us detect Alzheimer’s earlier will both help us put those treatments to better use and assess the results they produce in patients."

Michael C. Purdy | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>