Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early results using therapeutic pancreatic cancer vaccine show promise

15.11.2005


Johns Hopkins Kimmel Cancer Center researchers are encouraged by early results of a treatment vaccine for pancreatic cancer, a disease with few options and low odds for long-term survival. At about two years into a study of 60 patients, the researchers report that 88 percent survived one year and 76 percent are alive after two years.



"Even though our results are preliminary, the survival rates are an improvement over most published results of pancreatic cancer treatment studies," says Daniel Laheru, assistant professor at the Johns Hopkins Kimmel Cancer Center. Laheru is expected to present his findings in a press briefing at a joint meeting of the American Association for Cancer Research/National Cancer Institute/European Organization for Research and Treatment of Cancer in Philadelphia on November 15.

Until recently, most studies have shown pancreatic cancer survival rates at about 63 percent one year after diagnosis and 42 percent at two years. The long-term outlook is more grim - only 15 to 20 percent of patients with local disease are alive at five years. One 2003 study raised the survival bar higher, but with a chemotherapy and radiation regimen that Laheru describes as tough, with many side effects. "Since there is no universal standard for treating pancreatic cancer, it is difficult to make direct comparisons between all the studies," says Laheru.


In the current study, his team combined an immune-boosting vaccine with surgery and conventional postoperative chemotherapy and radiation. The vaccine, originally developed at Johns Hopkins, uses irradiated pancreatic cancer cells incapable of growing, but genetically altered to secrete a molecule called GM-CSF. The molecule acts as a lure to attract immune system cells to the site of the tumor vaccine where they encounter antigens on the surface of the irradiated cells. Then, these newly armed immune cells patrol the rest of the patient’s body to destroy remaining circulating pancreatic cancer cells with the same antigen profile.

Patients get one vaccine injection eight to ten weeks after surgery, then four booster shots after chemotherapy and radiation. Laheru and his team completed enrolling patients in the study this past January. The average follow-up time is 32 months.

"It is important that we continue to follow these patients to know how the treatment will work in the long-term," says Elizabeth Jaffee, M.D., the Dana and Albert "Cubby" Broccoli Professor in Oncology and Pathology. "We’re hopeful that these early results will hold true."

Jaffee and Laheru hope to begin multi-institutional studies in about a year. They are working with Hopkins pathologists from the Sol Goldman Pancreatic Cancer Research Center to analyze proteins from pancreatic cancer cells that may help them refine the vaccine’s targets.

Pancreatic cancer strikes more than 30,000 Americans annually, and about the same number will die each year.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinskimmelcancercenter.org
http://www.path.jhu.edu/pancreas/

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>