Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists work to discover how music training affects the brain

15.11.2005


New research shows that the special training of music conductors seems to enhance the way their senses work together – enabling them to quickly tell who played a wrong note, for example. Scientists hope the research will lead to new discoveries about how music training may change the brain.



"Studies have shown that while students who get music training may sometimes do better academically, no research has explored whether this training actually causes changes in the brain," said Jonathan Burdette, M.D., associate professor of radiology at Wake Forest University Baptist Medical Center.

The research, conducted by Wake Forest University Baptist Medical Center and the University of North Carolina at Greensboro (UNC-G) Music Research Institute, was presented today at the 35th annual meeting of the Society for Neuroscience in Washington, D.C. The study focused on multisensory processing, which is the brain’s ability to combine information from several senses, such as seeing an ambulance and hearing its siren.


"Multisensory processing has been shown to speed our reactions, help us identify objects and heighten our awareness," said Burdette. "We hope to learn which brain areas are involved in this ability and how they can be enhanced by training."

The researchers’ goal was to scientifically examine whether music conductors’ intensive training gives them special skills at locating sounds. For example, conductors must be very adept at not only identifying errors, but also in precisely identifying the errant sound both in time and space. This was one of the first studies to examine multisensory processing in this unique population.

"Our research suggests that conductors are better able to combine and use auditory and visual cues than the musically untrained," said Donald A. Hodges, Ph.D, Covington Distinguished Professor of Music Education at UNC-G. "The conductors were also significantly better at locating sounds in space and using sound to locate objects."

The study involved 20 conductors and 20 musically untrained subjects. Conductors were between the ages of 28-40 and had an average of more than 10 years’ experience as a band or orchestra director in middle or high school.

All participants were seated in a dark room and were asked to locate a briefly flashed light, a short beep, or a target that combined both light and sound at the same time and location. Targets were presented in random order from a variety of locations, and participants used a laser pointer to locate the target. The speed and precision of their responses were measured.

While subjects in both groups performed equally well in locating visual targets, conductors were significantly better at locating auditory targets than the musically untrained. They also performed much better when the light and sound were combined than they did on tasks using visual targets alone. This improvement was not seen in the musically untrained subjects and is typically not observed in the general population.

These results suggest fundamental differences in the ability of music conductors to use cues from multiple senses to locate objects in space. The next step in the research will be to have some of the subjects undergo brain scans with functional magnetic resonance imaging, which shows which areas of the brain are active during a task. The goal is to identify areas of the brain that may be involved in these differences in spatial abilities – and that may be capable of improved processing with training.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>