Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists work to discover how music training affects the brain

15.11.2005


New research shows that the special training of music conductors seems to enhance the way their senses work together – enabling them to quickly tell who played a wrong note, for example. Scientists hope the research will lead to new discoveries about how music training may change the brain.



"Studies have shown that while students who get music training may sometimes do better academically, no research has explored whether this training actually causes changes in the brain," said Jonathan Burdette, M.D., associate professor of radiology at Wake Forest University Baptist Medical Center.

The research, conducted by Wake Forest University Baptist Medical Center and the University of North Carolina at Greensboro (UNC-G) Music Research Institute, was presented today at the 35th annual meeting of the Society for Neuroscience in Washington, D.C. The study focused on multisensory processing, which is the brain’s ability to combine information from several senses, such as seeing an ambulance and hearing its siren.


"Multisensory processing has been shown to speed our reactions, help us identify objects and heighten our awareness," said Burdette. "We hope to learn which brain areas are involved in this ability and how they can be enhanced by training."

The researchers’ goal was to scientifically examine whether music conductors’ intensive training gives them special skills at locating sounds. For example, conductors must be very adept at not only identifying errors, but also in precisely identifying the errant sound both in time and space. This was one of the first studies to examine multisensory processing in this unique population.

"Our research suggests that conductors are better able to combine and use auditory and visual cues than the musically untrained," said Donald A. Hodges, Ph.D, Covington Distinguished Professor of Music Education at UNC-G. "The conductors were also significantly better at locating sounds in space and using sound to locate objects."

The study involved 20 conductors and 20 musically untrained subjects. Conductors were between the ages of 28-40 and had an average of more than 10 years’ experience as a band or orchestra director in middle or high school.

All participants were seated in a dark room and were asked to locate a briefly flashed light, a short beep, or a target that combined both light and sound at the same time and location. Targets were presented in random order from a variety of locations, and participants used a laser pointer to locate the target. The speed and precision of their responses were measured.

While subjects in both groups performed equally well in locating visual targets, conductors were significantly better at locating auditory targets than the musically untrained. They also performed much better when the light and sound were combined than they did on tasks using visual targets alone. This improvement was not seen in the musically untrained subjects and is typically not observed in the general population.

These results suggest fundamental differences in the ability of music conductors to use cues from multiple senses to locate objects in space. The next step in the research will be to have some of the subjects undergo brain scans with functional magnetic resonance imaging, which shows which areas of the brain are active during a task. The goal is to identify areas of the brain that may be involved in these differences in spatial abilities – and that may be capable of improved processing with training.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>