Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High tech imaging tells the tale of plaque from the inside out

15.11.2005


Not all plaque – the fatty substance that builds up in arteries – is the same and some plaque types are more likely to rupture, which can trigger the formation of a blood clot and a blocked artery. An experimental spectroscopic/imaging technique can provide exact information about plaque components that can help guide treatment, researchers reported at the American Heart Association’s Scientific Sessions 2005.



"Time-resolved laser-induced fluorescence spectroscopy or TR-LIFS can be used to accurately identify plaque with these dangerous characteristics, while the plaque still lines the walls of vessels," said lead researcher Laura Marcu, Ph.D., director of biophotonics research at the Cedars-Sinai Medical Center and associate professor at the University of Southern California in Los Angeles.

The laser pulse heats up or "excites" molecules in the plaque while researchers measure the "time" that molecules stay in the excited state. This time is specific to different types of molecules, which helps researchers determine the "exact composition of the plaque."


When plaque has a thin, fibrous layer or cap over a large core area of lipids, it’s most vulnerable to rupture, which can result in the blood supply to a part of the heart or brain being blocked.

Researchers tested the TR-LIFS device by identifying the type of plaque found in the carotid arteries, the main blood supply for the brain. They measured 353 plaque areas in the carotid arteries of 50 patients who were scheduled to undergo carotid endarterectomy, a procedure in which the carotid arteries are opened and plaque is surgically removed.

After the endarterectomy was done, pathologic examination was used to categorize the plaques as early (minimal thickening), fibrotic (collagen-rich lesions), or high-risk (necrotic core with a thin cap). These results were compared to those the researchers received when using the fluorescence spectroscopy to categorize the same plaques as early, fibrotic and high risk.

Results indicated the technique was 97 percent effective in identifying high-risk lesions.

"TR-LIFS was tested in patients undergoing endarterectomy because it allowed us to assess the plaque inside the artery and then compare our findings with the pathology of the specimens that had been surgically removed," Marcu said. "The study confirmed that our approach is feasible. The new method identifies the high-risk plaques, those with large lipid pools and inflammatory cells, factors contributing to weakening of the plaque. Plaques that do not display these characteristics are of less risk to the patient."

The initial results with TR-LIFS encouraged the researchers to develop an intravascular catheter-based system that would permit minimally invasive evaluation of arteries.

"The goal is to develop a TR-LIFS probe that can be used to assess plaque in vessels in the heart," Marcu said. "That’s where TR-LIFS could be important. Plaque composition could dictate the best intervention: bare metal stenting, use of drug-eluting stents, balloon angioplasty or even bypass surgery to restore blood flow to the heart."

Carole Bullock | EurekAlert!
Further information:
http://www.heart.org

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>