Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High tech imaging tells the tale of plaque from the inside out

15.11.2005


Not all plaque – the fatty substance that builds up in arteries – is the same and some plaque types are more likely to rupture, which can trigger the formation of a blood clot and a blocked artery. An experimental spectroscopic/imaging technique can provide exact information about plaque components that can help guide treatment, researchers reported at the American Heart Association’s Scientific Sessions 2005.



"Time-resolved laser-induced fluorescence spectroscopy or TR-LIFS can be used to accurately identify plaque with these dangerous characteristics, while the plaque still lines the walls of vessels," said lead researcher Laura Marcu, Ph.D., director of biophotonics research at the Cedars-Sinai Medical Center and associate professor at the University of Southern California in Los Angeles.

The laser pulse heats up or "excites" molecules in the plaque while researchers measure the "time" that molecules stay in the excited state. This time is specific to different types of molecules, which helps researchers determine the "exact composition of the plaque."


When plaque has a thin, fibrous layer or cap over a large core area of lipids, it’s most vulnerable to rupture, which can result in the blood supply to a part of the heart or brain being blocked.

Researchers tested the TR-LIFS device by identifying the type of plaque found in the carotid arteries, the main blood supply for the brain. They measured 353 plaque areas in the carotid arteries of 50 patients who were scheduled to undergo carotid endarterectomy, a procedure in which the carotid arteries are opened and plaque is surgically removed.

After the endarterectomy was done, pathologic examination was used to categorize the plaques as early (minimal thickening), fibrotic (collagen-rich lesions), or high-risk (necrotic core with a thin cap). These results were compared to those the researchers received when using the fluorescence spectroscopy to categorize the same plaques as early, fibrotic and high risk.

Results indicated the technique was 97 percent effective in identifying high-risk lesions.

"TR-LIFS was tested in patients undergoing endarterectomy because it allowed us to assess the plaque inside the artery and then compare our findings with the pathology of the specimens that had been surgically removed," Marcu said. "The study confirmed that our approach is feasible. The new method identifies the high-risk plaques, those with large lipid pools and inflammatory cells, factors contributing to weakening of the plaque. Plaques that do not display these characteristics are of less risk to the patient."

The initial results with TR-LIFS encouraged the researchers to develop an intravascular catheter-based system that would permit minimally invasive evaluation of arteries.

"The goal is to develop a TR-LIFS probe that can be used to assess plaque in vessels in the heart," Marcu said. "That’s where TR-LIFS could be important. Plaque composition could dictate the best intervention: bare metal stenting, use of drug-eluting stents, balloon angioplasty or even bypass surgery to restore blood flow to the heart."

Carole Bullock | EurekAlert!
Further information:
http://www.heart.org

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>