Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High tech imaging tells the tale of plaque from the inside out

15.11.2005


Not all plaque – the fatty substance that builds up in arteries – is the same and some plaque types are more likely to rupture, which can trigger the formation of a blood clot and a blocked artery. An experimental spectroscopic/imaging technique can provide exact information about plaque components that can help guide treatment, researchers reported at the American Heart Association’s Scientific Sessions 2005.



"Time-resolved laser-induced fluorescence spectroscopy or TR-LIFS can be used to accurately identify plaque with these dangerous characteristics, while the plaque still lines the walls of vessels," said lead researcher Laura Marcu, Ph.D., director of biophotonics research at the Cedars-Sinai Medical Center and associate professor at the University of Southern California in Los Angeles.

The laser pulse heats up or "excites" molecules in the plaque while researchers measure the "time" that molecules stay in the excited state. This time is specific to different types of molecules, which helps researchers determine the "exact composition of the plaque."


When plaque has a thin, fibrous layer or cap over a large core area of lipids, it’s most vulnerable to rupture, which can result in the blood supply to a part of the heart or brain being blocked.

Researchers tested the TR-LIFS device by identifying the type of plaque found in the carotid arteries, the main blood supply for the brain. They measured 353 plaque areas in the carotid arteries of 50 patients who were scheduled to undergo carotid endarterectomy, a procedure in which the carotid arteries are opened and plaque is surgically removed.

After the endarterectomy was done, pathologic examination was used to categorize the plaques as early (minimal thickening), fibrotic (collagen-rich lesions), or high-risk (necrotic core with a thin cap). These results were compared to those the researchers received when using the fluorescence spectroscopy to categorize the same plaques as early, fibrotic and high risk.

Results indicated the technique was 97 percent effective in identifying high-risk lesions.

"TR-LIFS was tested in patients undergoing endarterectomy because it allowed us to assess the plaque inside the artery and then compare our findings with the pathology of the specimens that had been surgically removed," Marcu said. "The study confirmed that our approach is feasible. The new method identifies the high-risk plaques, those with large lipid pools and inflammatory cells, factors contributing to weakening of the plaque. Plaques that do not display these characteristics are of less risk to the patient."

The initial results with TR-LIFS encouraged the researchers to develop an intravascular catheter-based system that would permit minimally invasive evaluation of arteries.

"The goal is to develop a TR-LIFS probe that can be used to assess plaque in vessels in the heart," Marcu said. "That’s where TR-LIFS could be important. Plaque composition could dictate the best intervention: bare metal stenting, use of drug-eluting stents, balloon angioplasty or even bypass surgery to restore blood flow to the heart."

Carole Bullock | EurekAlert!
Further information:
http://www.heart.org

More articles from Health and Medicine:

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>