Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ketogenic diet prevents seizures by enhancing brain energy production, increasing neuron stability


Although the high-fat, calorie-restricted ketogenic diet (KD) has long been used to prevent childhood epileptic seizures that are unresponsive to drugs, physicians have not really understood exactly why the diet works. New studies by a research team at Emory University School of Medicine show that the diet alters genes involved in energy metabolism in the brain, which in turn helps stabilize the function of neurons exposed to the challenges of epileptic seizures. This knowledge could help scientists identify specific molecular or genetic targets and lead to more effective drug treatments for epilepsy and brain damage.

The research will be presented at the annual meeting of the Society for Neuroscience in Washington, D.C. by Kristopher Bough, PhD, a postdoctoral student in the laboratory of Emory pharmacology professor Raymond Dingledine, PhD.

"These findings support our hypothesis that a dietary regimen can dramatically affect the expression of genes and the function of neurons within the brain, which enhances the ability of these neurons to withstand the metabolic challenges of epileptic seizures," Dr. Dingledine said.

The ketogenic diet causes molecules called ketone bodies to be produced as fat is broken down. Scientists have understood that these molecules somehow cause a change in metabolism leading to a potent anticonvulsant effect. According to some animal studies they also may limit the progression of epilepsy.

The Emory research team studied the link between diet and epileptic seizures on the behavioral, cellular and genetic level. They found, as had others, that in rats fed the KD the resistance to seizures develops slowly, over one to two weeks, in contrast to rats treated with conventional anticonvulsant drugs. On the cellular level, they found that the anticonvulsant effect of the ketogenic diet did not correlate with a rise in plasma ketone levels or with a decrease in plasma glucose. Because longer treatment with the KD was necessary to increase the resistance to seizures, they concluded that changes in gene expression might hold the key to the diet’s anticonvulsant effects.

To identify which genes might be involved, the researchers used microarray "gene chips" to examine changes in gene expression for more than 7,000 rat genes simultaneously. They focused on the hippocampus, a region of the brain known to play an important role in many kinds of epilepsies. More than 500 of the genes they examined were correlated with treatment with the KD. The most striking finding was the coordinated up-regulation of genes involved in energy metabolism.

To explain this genetic effect, the scientists first eliminated the possibility that the KD diet might cause enhanced production of GABA, a chemical messenger in the brain that helps limit seizure activity. They found that GABA levels in the hippocampus were unchanged with the KD.

To test whether energy reserves in hippocampal neurons were enhanced with the KD, they counted the number of energy "factories," or mitochondria, within cells using electron microscopy. They found that KD treatment significantly increased the number of mitochondria per unit area in the hippocampus. This finding, along with the concerted increase in the expression of genes encoding energy metabolic enzymes, led them to conclude that KD treatment enhances energy production in the hippocampus and may lead to improved neuronal stability.

Finally, the researchers tested whether brain tissue affected by the KD would be more resistant to low levels of glucose (an effect of seizures) because of their enhanced energy reserves. They found that synaptic communication in KD-fed rats was more resistant to low glucose levels than in control animals fed a regular diet.

The researchers believe their new knowledge could lead to the development of more effective drug treatments for epilepsy and brain damage.

And because the diet enhances the brain’s ability to withstand metabolic challenges, they also believe the ketogenic diet should be studied as a possible treatment for other neurodegenerative disorders such as Alzheimer’s or Parkinson’s diseases.

Holly Korschun | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>