Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ketogenic diet prevents seizures by enhancing brain energy production, increasing neuron stability

14.11.2005


Although the high-fat, calorie-restricted ketogenic diet (KD) has long been used to prevent childhood epileptic seizures that are unresponsive to drugs, physicians have not really understood exactly why the diet works. New studies by a research team at Emory University School of Medicine show that the diet alters genes involved in energy metabolism in the brain, which in turn helps stabilize the function of neurons exposed to the challenges of epileptic seizures. This knowledge could help scientists identify specific molecular or genetic targets and lead to more effective drug treatments for epilepsy and brain damage.

The research will be presented at the annual meeting of the Society for Neuroscience in Washington, D.C. by Kristopher Bough, PhD, a postdoctoral student in the laboratory of Emory pharmacology professor Raymond Dingledine, PhD.

"These findings support our hypothesis that a dietary regimen can dramatically affect the expression of genes and the function of neurons within the brain, which enhances the ability of these neurons to withstand the metabolic challenges of epileptic seizures," Dr. Dingledine said.



The ketogenic diet causes molecules called ketone bodies to be produced as fat is broken down. Scientists have understood that these molecules somehow cause a change in metabolism leading to a potent anticonvulsant effect. According to some animal studies they also may limit the progression of epilepsy.

The Emory research team studied the link between diet and epileptic seizures on the behavioral, cellular and genetic level. They found, as had others, that in rats fed the KD the resistance to seizures develops slowly, over one to two weeks, in contrast to rats treated with conventional anticonvulsant drugs. On the cellular level, they found that the anticonvulsant effect of the ketogenic diet did not correlate with a rise in plasma ketone levels or with a decrease in plasma glucose. Because longer treatment with the KD was necessary to increase the resistance to seizures, they concluded that changes in gene expression might hold the key to the diet’s anticonvulsant effects.

To identify which genes might be involved, the researchers used microarray "gene chips" to examine changes in gene expression for more than 7,000 rat genes simultaneously. They focused on the hippocampus, a region of the brain known to play an important role in many kinds of epilepsies. More than 500 of the genes they examined were correlated with treatment with the KD. The most striking finding was the coordinated up-regulation of genes involved in energy metabolism.

To explain this genetic effect, the scientists first eliminated the possibility that the KD diet might cause enhanced production of GABA, a chemical messenger in the brain that helps limit seizure activity. They found that GABA levels in the hippocampus were unchanged with the KD.

To test whether energy reserves in hippocampal neurons were enhanced with the KD, they counted the number of energy "factories," or mitochondria, within cells using electron microscopy. They found that KD treatment significantly increased the number of mitochondria per unit area in the hippocampus. This finding, along with the concerted increase in the expression of genes encoding energy metabolic enzymes, led them to conclude that KD treatment enhances energy production in the hippocampus and may lead to improved neuronal stability.

Finally, the researchers tested whether brain tissue affected by the KD would be more resistant to low levels of glucose (an effect of seizures) because of their enhanced energy reserves. They found that synaptic communication in KD-fed rats was more resistant to low glucose levels than in control animals fed a regular diet.

The researchers believe their new knowledge could lead to the development of more effective drug treatments for epilepsy and brain damage.

And because the diet enhances the brain’s ability to withstand metabolic challenges, they also believe the ketogenic diet should be studied as a possible treatment for other neurodegenerative disorders such as Alzheimer’s or Parkinson’s diseases.

Holly Korschun | EurekAlert!
Further information:
http://www.whsc.emory.edu

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>