Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Azheimer’s disease onset tied to lapses in attention

10.11.2005


People in early stages of Alzheimer’s disease have greater difficulty shifting attention back and forth between competing sources of information, a finding that offers new support for theories that contend breakdowns in attention play an important role in the onset of the disease.



"Our results provide evidence that breakdowns in attention produce a clear change in the early stages of Alzheimer’s-related dementia," said study co-author David A. Balota, a professor of psychology in Arts & Sciences at Washington University in St. Louis.

Routine tasks that require the shifting of attention, such as driving a car while conversing with a passenger, may become more challenging for people in very early stages of Alzheimer’s disease, suggests a new study from Washington University in St. Louis.
Published in a recent issue of the journal Neuropsychology, the study suggests that subtle breakdowns in attention may offer a reliable clue that a patient is grappling with early symptoms of Alzheimer’s-related dementia.



The findings are important because they offer clinicians and researchers another tool by which to better predict and understand dementia of the Alzheimer’s type early in its history. Psychologists focus on early detection in part because current medications are useful only when given very early in the course of the disease.

While it’s well known that memory skills deteriorate as Alzheimer’s progresses, recent research by Balota and Duchek, among others, have championed the notion that breakdowns in attention may be at the heart of many cognitive problems linked to Alzheimer’s. Although memory problems also show up in early stages of the disease, this study suggests that underlying declines in attention may be contributing to these memory mishaps and to other cognitive difficulties often associated with the disease.

"Because attention is prerequisite for memory, one might suspect that attention is one of the contributing culprits, at least early on in the disease," suggests study lead author Janet M. Duchek, an associate professor of psychology.

Participants for the study were drawn from volunteers at the Alzheimer’s Disease Research Center at Washington University. Duchek and Balota studied 94 older participants, average age mid-70s, who were healthy control individuals or individuals diagnosed with very mild, or mild dementia of the Alzheimer’s type.

In an effort to gauge each group’s ability to effectively monitor and switch among competing channels of information, Duchek and Balota relied on a well-established psychological testing technique know as the dichotic listening task.

The Dichotomy

Developed in the 1950s, the dichotic listening test plays off the fact that humans are hardwired to process sensory information in a cross-lateral fashion - words heard in the left ear tend to be processed in the right hemisphere of the brain, and vice-versa. Since the left hemisphere of the brain is typically dominant for language processing, words presented in the right ear often have an advantage over words presented simultaneously in the left ear — the right ear-left hemisphere processing channel is said to be "pre-potent" in that it has a default processing advantage over the left ear-right hemisphere channel.

Using the dichotic listening task, Duchek and Balota presented participants with distinct streams of audio information via headphones. One stream of information — computer-generated speech naming three digits (such as 4, 3, 1) — went to the left ear; a different stream (such as 9, 2, 5) went to the right ear.

By asking participants to recall numbers in the order they were presented to either ear, the researchers were able to measure an individual’s ability to switch back and forth between right-left processing channels, and more importantly, to monitor how well attention skills allowed them to overcome the "pre-potent" tendency to favor information presented to the default right ear-left hemisphere language channel.

As predicted, people with early dementia tended to rely more often on the default channel, reporting digits presented to the right ear far better than they reported digits presented to the left ear. When the researchers controlled for overall recall performance, the mild dementia group recalled 21.7% more information from their right ear vs. left ear, and even the very mildly affected group recalled 11.3% more from the right ear. The control participants only recalled 5.8% more from the right vs. left ear.

The right-ear advantage increased with dementia severity. People farther along in the disease relied even more on the dominant left-side channel; in other words, they found it even harder to override the usual path to process what went through the left ear to the right brain. Poor attentional control can leave people falling back on familiar, pre-programmed information pathways.

The study confirms that very early in the disease, people have problems with selective attention. This problem, although not as obvious as memory loss, may also explain why early-stage patients start to struggle with everyday tasks that call for processing a lot of information, such as driving. This speculation is supported by prior findings that performance on dichotic listening predicts accident rates in commercial bus drivers.

Findings from this study, the research team suggests, converge with accumulating evidence that individuals with early stage Alzheimer’s Disease have breakdowns controlling prepotent pathways across a variety of experimental paradigms, which place minimal demands on memory systems.

"Our hope," Duchek said, "is that this work increases recognition that Alzheimer’s Disease is not simply a disease of memory."

Gerry Everding | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>