Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected function for a key regulator of blood glucose levels

10.11.2005


An unexpected twist to a discovery reported just two months ago may significantly improve our understanding about the molecular origins of diabetes.



Scientists at the Salk Institute for Biological Studies then reported their discovery of a key cellular switch that instructs the liver to produce more glucose when blood sugar levels run low. Their paper was published in Nature.

Now, in the November issue of Cell Metabolism, they report that the very same switch limits its own activity to prevent the amount of produced glucose from overshooting healthy levels.


"This crucial fine-tuning is missing in diabetic individuals," explains Marc Montminy, a professor in the institute’s Clayton Foundation Laboratories for Peptide Biology. "When you measure glucose levels in diabetic patients in the morning or after they have been fasting, their glucose levels are very high because the body is unable to control the production of glucose," he adds.

Two hormones with opposite effects - insulin and glucagon - act together to maintain a steady level of glucose circulating in our bloodstream, to provide a constant and readily available energy supply for the cells in our body.

Right after a meal, when nutrient levels in the blood are high, the pancreas releases insulin, which tells muscle and liver cells to squirrel away glucose for later use. In addition, insulin stimulates the production of fat and shuts down the ability of the liver to produce glucose.

At night or between meals, however, when glucose supplies run low, the pancreas releases glucagon into the bloodstream, to signal the body to fire up the fat burner. But even during sleep, our brain relies solely on glucose for fuel. To keep the brain well supplied with energy, the liver actually manufactures glucose during sleep or when we are fasting.

In response to low blood sugar levels, the glucagon signal flips a switch that triggers glucose production in liver cells. This switch is a protein called TORC2 that, when activated by glucagon, turns on the expression of genes necessary to make glucose from scratch.

At the same time TORC2 sets the stage to be shut off quickly when glucose levels start rising. "We were quite surprised to find that activated TORC2 makes the liver more sensitive to insulin, allowing it to respond more effectively to rising glucose levels," says Salk research fellow and co-author Seung-Hoi Koo, who also is affiliated with the Sungkyunkwan University School of Medicine in Korea

TORC2 does so by increasing the amount of a protein called IRS2 (insulin receptor substrate 2) mainly in liver and pancreas cells. IRS2 acts as a molecular bridge between the insulin receptor and downstream targets in the insulin signaling pathway. With more IRS2 available, liver cells can react to minute amounts of insulin and stop churning out glucose.

Mice that lack IRS2 are severely diabetic since the insulin signal can’t "get through". However, when the Salk scientists treated them with gene therapy that delivered the missing gene for IRS2, healthy glucose levels were restored within a week.

"Understanding the regulation of insulin sensitivity represents a major challenge in the field of diabetes," says co-author Gianluca Canettieri, formerly a research fellow at Salk, now at the University of Rome, "La Sapienzia", Italy. "I think this finding could have significant implications in human therapy," he adds.

Other co-authors of the paper are Rebecca Berdeaux, Jose Heredia, Susan Hedrick and Xinmin Zhang, all at the Salk Institute for Biological Studies.

Cathy Yarbrough | EurekAlert!
Further information:
http://www.salk.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Could a particle accelerator using laser-driven implosion become a reality?

24.05.2018 | Physics and Astronomy

Hot cars can hit deadly temperatures in as little as one hour

24.05.2018 | Health and Medicine

Complementing conventional antibiotics

24.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>