Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Penn researchers utilize MRI for early diagnosis of schizophrenia


New way of using MRI may show us what the naked eye cannot see

Researchers may have discovered a new way that may ultimately assist in the early diagnosis of schizophrenia - by utilizing MRI to study the patient’s brain. Researchers at the University of Pennsylvania Health System (UPHS) looked for subtle brain abnormalities that cannot be seen by the human eye. A study examined the entire brain, looking at distributed patterns of abnormalities rather than differences in specific regions of the brain.

"In this study, we used high-dimensional shape transformations in which we compared a brain image with a template of a normal brain. Through this comparison, we then determined where and how the patient’s brain differed from healthy controls," explained Christos Davatzikos, PhD, Director of the Section of Biomedical Image Analysis in the Department of Radiology at Penn. "These methods are able to identify abnormalities that could not be detected by human inspection of the images created via MRI And, up until now, structural MRI has typically been used to diagnose physical anomalies like stroke or tumors, but it has not been helpful for diagnosis of psychiatric diseases."

Davatzikos says, "MRI produces images which are traditionally read mostly by radiologists. Now, we can do a quantitative reading of these images - bringing out information that is not obvious to the eye; one can think of computer readings as computational scanners. It’s a second level that says ’analyze this image and produce another image that highlights subtle abnormalities in the brain.’ This is fundamentally new information now that we can use for a larger spectrum of diseases and look for early diagnosis and prevention - such as the teen at risk for developing schizophrenia."

The results of the study demonstrate that sophisticated computational analysis methods can find unique structural brain characteristics in schizophrenia patients, with a predictive accuracy of more than 83%. Recently, Davatzikos and his group announced that further analysis of this data with even more sophisticated classification methods achieved a 91% predictive accuracy for diagnosis of schizophrenia via MRI (MICCAI 2005 meeting, Palm Springs, CA).

"This is the first time this level of predictive power of MRI for classification of schizophrenia is demonstrated in a study of this magnitude," adds Davatzikos. "This tells us there are unique patterns we can use and explore when we want to diagnose patients with schizophrenia. However, the biggest value for this new diagnostic tool will be for early detection before clinical manifestation of the disease. For this, we will need to examine teenagers at risk."

Schizophrenia commonly presents in late adolescence or early adulthood thereby disrupting normal development and attainment of education and achieving independence. "If the disease can be detected early, intervention can ameliorate its potential effects. For example, brain systems implicated in schizophrenia include those required for learning and memory. Knowing that these systems have reduced volume in an individual could justify cognitive remediation efforts that will palliate the deficits and allow better adaptation," said Raquel Gur, MD, PhD, Director of the Schizophrenia Center with the Department of Psychiatry at UPHS, who performed the studies supported by NIMH.

Davatzikos further explains, "If you can diagnose schizophrenia early, utilizing MRI along with other tools like genetic disposition, behavioral profiles and functional imaging -- before a patient actually develops the disease -- we can try to delay the onset of the disease and hopefully have a better outcome for the rest of their life."

"Despite the high accuracy with the MRI classified patients and healthy controls, the diagnosis of schizophrenia is based on the clinical presentation," says Gur. "However, it is time for mental health professionals to think of neuroimaging as an important diagnostic tool that merits further research."

Susanne Hartman | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>