Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brainstem blocks pain to protect key behaviors

08.11.2005


Certain behaviors, such as eating, drinking and urinating, are so crucial to survival that the brains of all vertebrates contain clusters of nerve cells that can suppress pain long enough to allow the animal to eat, drink -- or pee -- in peace.



A report from researchers at the University of Chicago, published early online in the Proceedings of the National Academy of Sciences, shows that by activating "OFF" cells and shutting down "ON" cells in the ventromedial medulla (VMM) – a small region in the brain stem – animals provide themselves with a form of "eating-induced analgesia," allowing them to complete essential tasks even in a difficult situation.

"Escaping pain and potential dangers may be important protective behaviors, but eating, drinking, and eliminating wastes are absolutely essential," said study author Peggy Mason, Ph.D., professor in the department of neurobiology, pharmacology and physiology (NPP) at the University of Chicago. "What we found was a very effective system that lets these animals focus on the essentials and postpone concerns that are slightly less pressing. It’s as if they could give themselves a six-second dose of morphine, allowing hunger to override pain."


Mason and colleague Hayley Foo, research associate in NPP, studied adult male rats in containers with a wire mesh floor that enabled them to deliver radiant heat to one hind paw. The heat caused no damage but was annoying enough to make the animal withdraw that paw within seconds.

When the rats ate, however, they postponed retracting the heated paw for six to eight seconds and continued to eat.

Food choice made no difference. Rats focused just as intently on standard rat chow as when munching chocolate chips, yogurt drops or butter cookies.

Although earlier studies found that eating took precedence over pain in food-deprived animals, this is the first study to show that feeding suppressed pain in well-fed animals.

To understand the neural basis of this form of pain suppression, the researchers next inserted electrodes to monitor brain activity in feeding rats.

The suspected source of pain relief was a cluster of cells in the VMM. In 1979, Howard Fields of the University of California at San Francisco identified two groups of neurons in the brain stem that could enhance or inhibit pain. Neurons that "facilitate" pain, which he labeled "ON cells, fire in bursts when animals are awake and are inactive during slow-wave sleep. "OFF" cells, which suppress pain, are active during slow-wave sleep.

Foo and Mason, who completed her post-doctoral training in Fields’ laboratory, found that the pain-enhancing ON cells were inhibited and the pain-suppressing OFF cells were excited during feeding, results that duplicated the effects of morphine. The changes occurred only during selected portions of eating, while the animal was both holding and chewing the food. A similar response took place when the animals drank water or urinated.

This response "protects critical behaviors from disruption," the authors note, "allowing an animal to nourish itself without being distracted." (Animals that don’t urinate are at high-risk for infections.)

As a final test the authors used drugs to inactivate the VMM. This completely eliminated the delayed response to pain.

"This is the best evidence so far on the biological significance of OFF cell activity," said UCSF’s Fields, who was not connected with the study. "It is a major step in understanding the neurobiological mechanisms of decision making in the face of conflict -- in this case the choice between whether to feed or flee. Off cells help you feed instead of flee."

Mason and Foo also found, however, that in situations that might be more dangerous, the feed-or-flee balance could be tipped the other way. Given just before feeding, a strong puff of air – perhaps indicating a nearby predator -- activated ON cells, and restored pain sensation. Such "predation-related stimuli," the authors speculate, "activate ON cells and thereby evoke a state of vigilant eating without concurrent sensory suppression."

"We have known for a long time that these cells could be manipulated by opioids, such as morphine," said Mason, "but we had no good explanation of what their natural role might be." Their prime location -- in the brain stem, the "Gold Coast of neuroanatomical property" -- suggests that they "must do something crucial." This study indicates that they "protect against distraction. They give precedence to essential behaviors."

Defects in this system could be linked to various disorders, Mason suggests, such as sudden infant death syndrome. Overactive OFF cells during sleep could mask the discomfort of oxygen deprivation.

Fields suspects that the link between eating and pain relief, in a society where the risks of caloric plenty far exceeds those of predation, may even be related to obesity. "Are OFF cells promoting bravery," he asked, "or gluttony?"

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>