Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brainstem blocks pain to protect key behaviors

08.11.2005


Certain behaviors, such as eating, drinking and urinating, are so crucial to survival that the brains of all vertebrates contain clusters of nerve cells that can suppress pain long enough to allow the animal to eat, drink -- or pee -- in peace.



A report from researchers at the University of Chicago, published early online in the Proceedings of the National Academy of Sciences, shows that by activating "OFF" cells and shutting down "ON" cells in the ventromedial medulla (VMM) – a small region in the brain stem – animals provide themselves with a form of "eating-induced analgesia," allowing them to complete essential tasks even in a difficult situation.

"Escaping pain and potential dangers may be important protective behaviors, but eating, drinking, and eliminating wastes are absolutely essential," said study author Peggy Mason, Ph.D., professor in the department of neurobiology, pharmacology and physiology (NPP) at the University of Chicago. "What we found was a very effective system that lets these animals focus on the essentials and postpone concerns that are slightly less pressing. It’s as if they could give themselves a six-second dose of morphine, allowing hunger to override pain."


Mason and colleague Hayley Foo, research associate in NPP, studied adult male rats in containers with a wire mesh floor that enabled them to deliver radiant heat to one hind paw. The heat caused no damage but was annoying enough to make the animal withdraw that paw within seconds.

When the rats ate, however, they postponed retracting the heated paw for six to eight seconds and continued to eat.

Food choice made no difference. Rats focused just as intently on standard rat chow as when munching chocolate chips, yogurt drops or butter cookies.

Although earlier studies found that eating took precedence over pain in food-deprived animals, this is the first study to show that feeding suppressed pain in well-fed animals.

To understand the neural basis of this form of pain suppression, the researchers next inserted electrodes to monitor brain activity in feeding rats.

The suspected source of pain relief was a cluster of cells in the VMM. In 1979, Howard Fields of the University of California at San Francisco identified two groups of neurons in the brain stem that could enhance or inhibit pain. Neurons that "facilitate" pain, which he labeled "ON cells, fire in bursts when animals are awake and are inactive during slow-wave sleep. "OFF" cells, which suppress pain, are active during slow-wave sleep.

Foo and Mason, who completed her post-doctoral training in Fields’ laboratory, found that the pain-enhancing ON cells were inhibited and the pain-suppressing OFF cells were excited during feeding, results that duplicated the effects of morphine. The changes occurred only during selected portions of eating, while the animal was both holding and chewing the food. A similar response took place when the animals drank water or urinated.

This response "protects critical behaviors from disruption," the authors note, "allowing an animal to nourish itself without being distracted." (Animals that don’t urinate are at high-risk for infections.)

As a final test the authors used drugs to inactivate the VMM. This completely eliminated the delayed response to pain.

"This is the best evidence so far on the biological significance of OFF cell activity," said UCSF’s Fields, who was not connected with the study. "It is a major step in understanding the neurobiological mechanisms of decision making in the face of conflict -- in this case the choice between whether to feed or flee. Off cells help you feed instead of flee."

Mason and Foo also found, however, that in situations that might be more dangerous, the feed-or-flee balance could be tipped the other way. Given just before feeding, a strong puff of air – perhaps indicating a nearby predator -- activated ON cells, and restored pain sensation. Such "predation-related stimuli," the authors speculate, "activate ON cells and thereby evoke a state of vigilant eating without concurrent sensory suppression."

"We have known for a long time that these cells could be manipulated by opioids, such as morphine," said Mason, "but we had no good explanation of what their natural role might be." Their prime location -- in the brain stem, the "Gold Coast of neuroanatomical property" -- suggests that they "must do something crucial." This study indicates that they "protect against distraction. They give precedence to essential behaviors."

Defects in this system could be linked to various disorders, Mason suggests, such as sudden infant death syndrome. Overactive OFF cells during sleep could mask the discomfort of oxygen deprivation.

Fields suspects that the link between eating and pain relief, in a society where the risks of caloric plenty far exceeds those of predation, may even be related to obesity. "Are OFF cells promoting bravery," he asked, "or gluttony?"

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>