Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Success tastes sweet for scientists

08.11.2005


A low-calorie sweetener that tastes like sugar and could help control diseases like diabetes and obesity may be closer to reality thanks to research published today.



Scientists at The University of Manchester and The University of Maryland School of Medicine in Baltimore have made a major advance in understanding what makes a substance taste sweet.

The discovery could help pave the way for the development of low-calorie sweeteners that mimic natural sugar and leave no bitter aftertaste.


“Our study has for the first time measured how sugar and some synthetic sweeteners interact with two types of taste receptors on the tongue,” said Dr Graeme Conn in Manchester’s Faculty of Life Sciences.

“Some synthetic sweeteners only interact with one receptor. We found that sugar interacts with both. Similarly, sucralose, the sweetener used in Splenda, also interacted with both receptors but with a greater intensity to sugar.

“Knowing what molecular mechanisms are at play has given us a greater understanding of what makes sugar taste sweet and will no doubt help us design better sweeteners.”

The research findings, published in the November 8 issue of the scientific journal Current Biology, have implications for diabetic patients, who need to regulate their sugar intake, as well as for tackling the growing problem of obesity.

A recent study by food firm GoLower showed that the average adult in Britain consumed 33 teaspoons of sugar a day, more than three times the recommended amount.

Much of this sugar intake was consumed through everyday food items, like baked beans, bread and cereal, as well as in tea, coffee and alcoholic drinks.

“A major goal of the food-science industry has been to create a sweetener that tastes like sugar but isn’t high in calories,” said Dr Steven Munger, of the University of Maryland School of Medicine.

“To do this, it would be invaluable to know how the natural substance interacts with taste receptors so that synthetic products can be created to mimic that interaction.

“We hope that food scientists can use our research to create sugar alternatives with the most natural taste, offering more choice to consumers who rely on low-calorie products to help control diseases like diabetes and obesity.”

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>