Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study broadens understanding of enzymes linked to tumor promoting molecule

07.11.2005


May help researchers develop cancer therapies that target one enzyme, while leaving the other alone



Virginia Commonwealth University Massey Cancer Center researchers have found that two enzymes that catalyze the same reaction and produce the same product have opposite effects on cell growth and death. These findings may help researchers develop cancer therapies that target one enzyme, while leaving the other alone.

In the November issue of the Journal of Biological Chemistry, Sarah Spiegel, Ph.D., professor and chair in the Department of Biochemistry at the VCU School of Medicine and co-leader of the Massey Cancer Center Cell Signaling program, and researchers in her lab showed that sphingosine kinases called SphK1 and SphK2, a family of enzymes that forms the potent lipid mediator sphingosine-1-phosphate (S1P), have opposing roles in the regulation of ceramide biosynthesis. S1P is a molecule that has been shown to promote tumor cell growth and inhibit cell death.


They found that the different effects of SphK1 and SphK2 may arise because they act at different locations within the cell. In addition, the data suggest that SphK2 can sensitize cancer cells to chemotherapy, and therefore may be a potential target for cancer therapy.

"In this study, we found that it is not what the reaction produces, but where it occurs that determines the ultimate effects," said lead author Michael Maceyka, Ph.D., a Massey Cancer Center trainee in the Department of Biochemistry at VCU.

"Understanding that SphK1 and SphK2 have opposite effects on cell growth may be helpful in creating more effective chemotherapeutic agents designed to target a specific sphingosine kinase without acting on the other."

Maceyka and the Spiegel group showed that SphK1 decreased levels of the sphingolipid known as ceramide, while SphK2 increased these levels. According to Maceyka many chemotherapy agents increase the level of ceramide in a cell, which is necessary in order for the agent to kill tumor cells. Sphingolipids are essential components of cell membranes for all animal and plant cells.

"These results highlight the importance of designing inhibitors of exquisite selectivity. Our findings highlight some critical information - just because two enzymes catalyze the same reaction does not mean that targeting one will have the same effect as targeting the other," he said.

S1P is an important signaling molecule that cells use to communicate with one another and to trigger various effects within the cell. S1P has also been implicated in many processes contributing to cancer progression, including growth, survival and angiogenesis, the process by which tumor cells recruit new blood vessels that both feed the tumor with nutrients and provide a conduit for the tumor cells to spread throughout the body.

Sathya Achia-Abraham | EurekAlert!
Further information:
http://www.vcu.edu/mcc/.

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>