Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study broadens understanding of enzymes linked to tumor promoting molecule

07.11.2005


May help researchers develop cancer therapies that target one enzyme, while leaving the other alone



Virginia Commonwealth University Massey Cancer Center researchers have found that two enzymes that catalyze the same reaction and produce the same product have opposite effects on cell growth and death. These findings may help researchers develop cancer therapies that target one enzyme, while leaving the other alone.

In the November issue of the Journal of Biological Chemistry, Sarah Spiegel, Ph.D., professor and chair in the Department of Biochemistry at the VCU School of Medicine and co-leader of the Massey Cancer Center Cell Signaling program, and researchers in her lab showed that sphingosine kinases called SphK1 and SphK2, a family of enzymes that forms the potent lipid mediator sphingosine-1-phosphate (S1P), have opposing roles in the regulation of ceramide biosynthesis. S1P is a molecule that has been shown to promote tumor cell growth and inhibit cell death.


They found that the different effects of SphK1 and SphK2 may arise because they act at different locations within the cell. In addition, the data suggest that SphK2 can sensitize cancer cells to chemotherapy, and therefore may be a potential target for cancer therapy.

"In this study, we found that it is not what the reaction produces, but where it occurs that determines the ultimate effects," said lead author Michael Maceyka, Ph.D., a Massey Cancer Center trainee in the Department of Biochemistry at VCU.

"Understanding that SphK1 and SphK2 have opposite effects on cell growth may be helpful in creating more effective chemotherapeutic agents designed to target a specific sphingosine kinase without acting on the other."

Maceyka and the Spiegel group showed that SphK1 decreased levels of the sphingolipid known as ceramide, while SphK2 increased these levels. According to Maceyka many chemotherapy agents increase the level of ceramide in a cell, which is necessary in order for the agent to kill tumor cells. Sphingolipids are essential components of cell membranes for all animal and plant cells.

"These results highlight the importance of designing inhibitors of exquisite selectivity. Our findings highlight some critical information - just because two enzymes catalyze the same reaction does not mean that targeting one will have the same effect as targeting the other," he said.

S1P is an important signaling molecule that cells use to communicate with one another and to trigger various effects within the cell. S1P has also been implicated in many processes contributing to cancer progression, including growth, survival and angiogenesis, the process by which tumor cells recruit new blood vessels that both feed the tumor with nutrients and provide a conduit for the tumor cells to spread throughout the body.

Sathya Achia-Abraham | EurekAlert!
Further information:
http://www.vcu.edu/mcc/.

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>