Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study broadens understanding of enzymes linked to tumor promoting molecule

07.11.2005


May help researchers develop cancer therapies that target one enzyme, while leaving the other alone



Virginia Commonwealth University Massey Cancer Center researchers have found that two enzymes that catalyze the same reaction and produce the same product have opposite effects on cell growth and death. These findings may help researchers develop cancer therapies that target one enzyme, while leaving the other alone.

In the November issue of the Journal of Biological Chemistry, Sarah Spiegel, Ph.D., professor and chair in the Department of Biochemistry at the VCU School of Medicine and co-leader of the Massey Cancer Center Cell Signaling program, and researchers in her lab showed that sphingosine kinases called SphK1 and SphK2, a family of enzymes that forms the potent lipid mediator sphingosine-1-phosphate (S1P), have opposing roles in the regulation of ceramide biosynthesis. S1P is a molecule that has been shown to promote tumor cell growth and inhibit cell death.


They found that the different effects of SphK1 and SphK2 may arise because they act at different locations within the cell. In addition, the data suggest that SphK2 can sensitize cancer cells to chemotherapy, and therefore may be a potential target for cancer therapy.

"In this study, we found that it is not what the reaction produces, but where it occurs that determines the ultimate effects," said lead author Michael Maceyka, Ph.D., a Massey Cancer Center trainee in the Department of Biochemistry at VCU.

"Understanding that SphK1 and SphK2 have opposite effects on cell growth may be helpful in creating more effective chemotherapeutic agents designed to target a specific sphingosine kinase without acting on the other."

Maceyka and the Spiegel group showed that SphK1 decreased levels of the sphingolipid known as ceramide, while SphK2 increased these levels. According to Maceyka many chemotherapy agents increase the level of ceramide in a cell, which is necessary in order for the agent to kill tumor cells. Sphingolipids are essential components of cell membranes for all animal and plant cells.

"These results highlight the importance of designing inhibitors of exquisite selectivity. Our findings highlight some critical information - just because two enzymes catalyze the same reaction does not mean that targeting one will have the same effect as targeting the other," he said.

S1P is an important signaling molecule that cells use to communicate with one another and to trigger various effects within the cell. S1P has also been implicated in many processes contributing to cancer progression, including growth, survival and angiogenesis, the process by which tumor cells recruit new blood vessels that both feed the tumor with nutrients and provide a conduit for the tumor cells to spread throughout the body.

Sathya Achia-Abraham | EurekAlert!
Further information:
http://www.vcu.edu/mcc/.

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>