Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Boost for Radiation Therapy

03.11.2005


Does a combination of radiation therapy and the inhibition of integrins (key molecules in angiogenesis) improve the chance of cure in cancer?



An increasing number of cancer patients are cured today by radiation therapy – alone or in combination with surgery or chemotherapy. At the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), scientists of the Clinical Cooperation Unit “Radiation Oncology” headed by Professor Dr. Dr. Peter Huber are identifying ways to further enhance the effectiveness of this type of treatment. The research team is targeting a weak point of the tumor: the formation of new blood vessels, or angiogenesis.

Once a tumor has reached pinhead size, it needs a supply of blood by blood vessels. If this supply is cut off, tumor growth comes to a halt. To suppress the formation of new blood vessels, integrins are a suitable target. This protein family comprises about 20 members that are involved in cell-cell interaction and regulate contacts with the surrounding protein matrix. Integrins play a key role in the formation of new blood vessels.


The Heidelberg researchers have now tested a combination of radiotherapy and a drug named S247, a substance which specifically inhibits the function of integrins. Investigations in the culture dish have shown that the combination therapy is considerably more effective both against tumor cells and against blood vessel-forming endothelial cells than irradiation alone. The combination approach has also been tested in mice with transplanted human tumors (glioblastoma, skin and prostate cancer). In these experiments, the combined treatment slowed down tumor growth – with no noticeable toxicity – more than twice as much as either of the therapies alone. In addition, tumors in animals treated by the combination approach formed significantly less blood vessels.

The Heidelberg researchers were able to show that the synergistic effect of the combination treatment can be ascribed to the fact that integrin inhibition neutralizes the angiogenesis-promoting effect of radiation. As a survival strategy, endothelial cells respond to radiation by increasing their integrin production. This promotes their invasion of the tumor tissue. The S247 substance counteracts this effect, while at the same time promoting programmed cell of endothelial cells.

The researchers are now working to define the optimum time period between administration of the drug and irradiation. In a next step, they will carry out clinical studies to investigate whether integrin inhibitors also enhance the chances of cure in patients treated for cancer.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V.).

Julia Rautenstrauch | alfa
Further information:
http://www.dkfz.de/de/strahlentherapie/index.html

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>