Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensors, a smart dose of medicine for cancer treatment

03.11.2005


New sensor systems being developed will help treat cancer and improve the accuracy and reliability of existing radiation treatments. They should help improve patient care and outcomes. The results will go straight to commercialisation when finalised next year.



The INVORAD project developed systems for real-time radiation monitoring for patient dosimetry in Intensity Modulated Radiotherapy (IMRT). IMRT is a radiation therapy for cancers that improves clinical outcomes by more accurately targeting tumours and minimising the amount of radiation absorbed by healthy tissue.

The result is that patients only receive a high radiation dose where they need it and healthy tissue is preserved.


The problem with IMRT so far, however, is that it becomes increasingly difficult to verify that patients receive the prescribed dose of radiation. "IMRT prescriptions are based on very complex computer simulations, so it is important to validate these simulations by verifying exactly how much radiation is reaching the patient and where it is landing," says Aleksandar Jaksic, INVORAD project coordinator at Ireland’s Tyndall National Institute.

INVORAD developed two sensors, a silicon diode and a p-channel metal-oxide semiconductor field-effect transistor (MOSFET), to do just that. "Several features, such as miniature size, response to types of radiation involved in radiotherapy, compatibility with microprocessors that enables real-time read-out and low cost, make these semiconductor sensors eminently suitable for the intended application," says Jaksic.

The diode sensor system is arranged in a series of modules containing 1069 individual diodes that can pick up incoming radiation.

"These diodes need to be very small and while there are commercial packaged diodes out there we needed diodes in bare die form with some novel properties so we developed the diodes ourselves, here at the Tyndall Institute," says Jaksic.

The arrays are extremely accurate and can track radiation at micro-Gray resolution over millimetres of spatial resolution.

These are then linked to a read-out unit and a PC with dedicated software. The read-out unit is based on ASIC (Application Specific Integrated Circuit) and microprocessor technologies, and its function is to communicate with, and retrieve data from, the sensor arrays. The PC and software provide system control, connectivity to other parts of an overall radiotherapy system, such as record and verify packages, and patient-specific data storage.

INVORAD also developed a cylindrical ’body phantom’. The ’phantom’ is given the prescribed dose and the diode sensors pick up the dose actually delivered. "The two modular 2D diode arrays are placed in orthogonal positions inside the phantom, so we have data in 3D over time," says Jaksic.

If the ’phantom’ treatment matches the prescription of the simulator, the patient is given treatment. If not, the treatment plan needs to be corrected. "We created modifications on the diodes and diode arrays, improving their specifications for this project. In fact, every element of the project we worked on received some sort of improvement on current systems," says Jaksic.

Some types of MOSFETs can also detect radiation. In the INVORAD MOSFET-based system these are used in-vivo, mounted in medical catheters in the form of linear arrays, entering the patient through a cavity.

"We’re currently testing that device in patients with our clinical partner, the Clatterbridge Centre for Oncology, one of the largest oncology centres in the UK. Of the two devices, the diode system is the most commercially viable. However, the MOSFET system is working and we’ll have the results of patients trials in the next few months," says Jaksic.

"We need to further optimise some parameters of the diode sensor system, but from the work we’ve done so far we know how to solve these remaining issues." Jaksic believes it is worth the wait. "Unlike most projects, this device will go straight to market and our commercial partner, ScandiDos in Uppsala, Sweden, is a start-up created for the manufacture and marketing of the device."

Jaksic is particularly pleased because the new sensor systems will improve treatment verification for a large number of cancer patients.

"The prevailing opinion is that IMRT improves treatment outcomes," says Jaksic. "Crucially, IMRT reduces the side-effects patients often suffer from radiotherapy and improves accuracy of dose delivery, and these are the most important impacts in the treatment of cancer."

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>