Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensors, a smart dose of medicine for cancer treatment

03.11.2005


New sensor systems being developed will help treat cancer and improve the accuracy and reliability of existing radiation treatments. They should help improve patient care and outcomes. The results will go straight to commercialisation when finalised next year.



The INVORAD project developed systems for real-time radiation monitoring for patient dosimetry in Intensity Modulated Radiotherapy (IMRT). IMRT is a radiation therapy for cancers that improves clinical outcomes by more accurately targeting tumours and minimising the amount of radiation absorbed by healthy tissue.

The result is that patients only receive a high radiation dose where they need it and healthy tissue is preserved.


The problem with IMRT so far, however, is that it becomes increasingly difficult to verify that patients receive the prescribed dose of radiation. "IMRT prescriptions are based on very complex computer simulations, so it is important to validate these simulations by verifying exactly how much radiation is reaching the patient and where it is landing," says Aleksandar Jaksic, INVORAD project coordinator at Ireland’s Tyndall National Institute.

INVORAD developed two sensors, a silicon diode and a p-channel metal-oxide semiconductor field-effect transistor (MOSFET), to do just that. "Several features, such as miniature size, response to types of radiation involved in radiotherapy, compatibility with microprocessors that enables real-time read-out and low cost, make these semiconductor sensors eminently suitable for the intended application," says Jaksic.

The diode sensor system is arranged in a series of modules containing 1069 individual diodes that can pick up incoming radiation.

"These diodes need to be very small and while there are commercial packaged diodes out there we needed diodes in bare die form with some novel properties so we developed the diodes ourselves, here at the Tyndall Institute," says Jaksic.

The arrays are extremely accurate and can track radiation at micro-Gray resolution over millimetres of spatial resolution.

These are then linked to a read-out unit and a PC with dedicated software. The read-out unit is based on ASIC (Application Specific Integrated Circuit) and microprocessor technologies, and its function is to communicate with, and retrieve data from, the sensor arrays. The PC and software provide system control, connectivity to other parts of an overall radiotherapy system, such as record and verify packages, and patient-specific data storage.

INVORAD also developed a cylindrical ’body phantom’. The ’phantom’ is given the prescribed dose and the diode sensors pick up the dose actually delivered. "The two modular 2D diode arrays are placed in orthogonal positions inside the phantom, so we have data in 3D over time," says Jaksic.

If the ’phantom’ treatment matches the prescription of the simulator, the patient is given treatment. If not, the treatment plan needs to be corrected. "We created modifications on the diodes and diode arrays, improving their specifications for this project. In fact, every element of the project we worked on received some sort of improvement on current systems," says Jaksic.

Some types of MOSFETs can also detect radiation. In the INVORAD MOSFET-based system these are used in-vivo, mounted in medical catheters in the form of linear arrays, entering the patient through a cavity.

"We’re currently testing that device in patients with our clinical partner, the Clatterbridge Centre for Oncology, one of the largest oncology centres in the UK. Of the two devices, the diode system is the most commercially viable. However, the MOSFET system is working and we’ll have the results of patients trials in the next few months," says Jaksic.

"We need to further optimise some parameters of the diode sensor system, but from the work we’ve done so far we know how to solve these remaining issues." Jaksic believes it is worth the wait. "Unlike most projects, this device will go straight to market and our commercial partner, ScandiDos in Uppsala, Sweden, is a start-up created for the manufacture and marketing of the device."

Jaksic is particularly pleased because the new sensor systems will improve treatment verification for a large number of cancer patients.

"The prevailing opinion is that IMRT improves treatment outcomes," says Jaksic. "Crucially, IMRT reduces the side-effects patients often suffer from radiotherapy and improves accuracy of dose delivery, and these are the most important impacts in the treatment of cancer."

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>