Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New therapeutic target identified in inherited brain tumor disorder

02.11.2005


Researchers studying a mouse model of neurofibromatosis 1 (NF1), a genetic condition that causes childhood brain tumors, have found their second new drug target in a year, a protein called methionine aminopeptidase-2 (MetAP2).



An established drug, fumagillin, is already known to suppress the activity of MetAP2. Researchers at Washington University School of Medicine in St. Louis showed that fumagillin significantly slowed the rapid proliferation of cultured mouse brain cells that resulted from the loss of Nf1, the gene that causes neurofibromatosis 1. Evaluation of the ability of this class of drugs to control brain tumor growth in small animal models is planned.

"This agent and others like it have already been in clinical trials as treatments for other tumors, so if we find that fumagillin inhibits brain tumor growth in preclinical studies, it will be a much smaller leap to using these compounds in patients with NF1," says senior investigator David H. Gutmann, M.D., Ph.D., the Donald O. Schnuck Family Professor of Neurology at Washington University School of Medicine in St. Louis and co-director of the neuro-oncology program at the Siteman Cancer Center.


Neurofibromatosis 1 affects more than 100,000 people in the United States and is one of the most common tumor predisposition syndromes. Gutmann and his colleagues discovered that abnormally high levels of MetAP2 may be a distinguishing characteristic of brain tumors in patients with NF1. Analyses of other similar brain tumors did not reveal the high MetAP2 levels characteristic of tumors caused by NF1.

To identify MetAP2, Gutmann collaborated with Jason D. Weber, Ph.D., assistant professor of medicine and of cellular biology and anatomy at the Washington University Neurofibromatosis Center. The center facilitates multidisciplinary neurofibromatosis research and is dedicated to developing better treatments to improve the lives of patients affected with neurofibromatosis.

Researchers in Gutmann’s and Weber’s laboratories took samples of cerebrospinal fluid from wild-type mice and a genetically engineered mouse model of NF1. Using a technique called proteomic analysis, they looked at the number of times copies of any given protein were found in the fluid. The goal was to identify proteins whose levels were different in the spinal fluid of the mouse model compared to normal mice.

Gutmann and Weber previously used the genetically engineered mice for a proteomic analysis of astrocytes, the brain cells that often become cancerous in patients with NF1. That led to the finding that proteins in the mammalian target of rapamycin pathway (mTOR) are overactivated, suggesting that mTOR may be a promising target for future chemotherapy for NF1-associated brain tumors.

The new study’s results suggest that MetAP2 may be directly regulated by neurofibromin, the protein produced by the Nf1 gene.

Like the mTOR pathway proteins, MetAP2 is normally active in processes that regulate the production of proteins from RNA. Gutmann and Weber plan additional studies to determine how increased MetAP2 expression enables astrocyte growth and brain tumor development.

"The availability of a mouse model of NF1-associated brain tumors allows us to conduct experiments that we could never perform in humans that have already broadened our understanding of the function of the Nf1 gene," Gutmann says. "It’s highly likely that these new insights will lead to new treatments for NF1 patients."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>