Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW scientists report a new method to speed bird flu vaccine production

01.11.2005


In the event of an influenza pandemic, the world’s vaccine manufacturers will be in a race against time to forestall calamity. But now, thanks to a new technique to more efficiently produce the disarmed viruses that are the seed stock for making flu vaccine in large quantities, life-saving inoculations may be available more readily than before. The work is especially important as governments worldwide prepare for a predicted pandemic of avian influenza.



Writing this week (Oct. 31, 2005) in the online edition of the Proceedings of the National Academies of Science (PNAS), a team of researchers from the University of Wisconsin-Madison and the University of Tokyo report a new way to generate genetically altered influenza virus. The lab-made virus - whose genes are manipulated to disarm its virulent nature - can be seeded into chicken eggs to generate the vaccine used in inoculations, which prepare the human immune system to recognize and defeat the wild viruses that spread among humans in an epidemic or pandemic.

In their report, a team led by UW-Madison virologists Yoshihiro Kawaoka and Gabriele Neumann, describes an improved "reverse genetics" technique that makes it easier to make a seed virus in monkey kidney cells, which, like tiny factories, churn out millions of copies of the disarmed virus to be used to make vaccines.


In nature, viruses commandeer a cell’s reproductive machinery to make new virus particles, which go on to infect other cells and make yet more virus particles. Vaccine makers use a monkey kidney cell line to make non-virulent viruses that serve as the raw material for vaccines. The technique reported by the Wisconsin team improves upon a previous reverse genetics method (developed by Kawaoka’s group in 1999) by significantly reducing the number of plasmid vectors required to ferry viral genes into the monkey kidney cells used to produce the virus particles to make vaccines. "Compared to other types of cells, which are not approved for vaccine production, it is not always easy to introduce plasmids into the monkey kidney cells, which are approved for such use," says Kawaoka, an influenza expert and a professor of pathobiological sciences in UW-Madison’s School of Veterinary Medicine. Monkey kidney cells are used routinely for generation of seed strains for vaccine production because they are not known to carry any unknown infectious agents and do not cause tumors.

According to Kawaoka, "application of the new system may be especially advantageous in situations of outbreaks of highly pathogenic avian influenza viruses."

When a new strain of highly virulent influenza emerges to infect humans, vaccine makers must tailor their vaccines to match it because, genetically, the virus is always different. The process is a race against time and can take months depending on how quickly new strains are identified, genetically disarmed and subsequently generated in the lab for use to make vaccines in large quantities. The new technique promises to ensure ready generation of seed strains for the production of vaccines required to blunt the spread of influenza. In the event of an outbreak of especially virulent strains of influenza, such as the H5N1 or "bird flu" viruses now being monitored by scientists, any efficiency in the manufacture of vaccines will be important.

The method devised by Kawaoka and his colleagues reduces the number of plasmids required to introduce viral genes into the monkey kidney cell lines used to mass produce the deactivated virus for use in vaccine manufacture. "By reducing the number of plasmids, we increase the efficiency of virus production," Kawaoka explains.

In addition to Kawaoka, the new PNAS report was authored by Neumann of the UW-Madison School of Veterinary Medicine, Ken Fujii of the University of Tokyo’s Institute of Medical Sciences, and Yoichiro Kino of Japan’s Chemo-Sero Therapeutic Research Institute. The work was funded by grants from the U.S. National Institutes of Health, the Ministries of Education, Culture, Sports, Science and Technology of Japan, and by the Core Research for Evolutional Science and Technology.

Yoshihiro Kawaoka | EurekAlert!
Further information:
http://www.vetmed.wisc.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>