Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW scientists report a new method to speed bird flu vaccine production

01.11.2005


In the event of an influenza pandemic, the world’s vaccine manufacturers will be in a race against time to forestall calamity. But now, thanks to a new technique to more efficiently produce the disarmed viruses that are the seed stock for making flu vaccine in large quantities, life-saving inoculations may be available more readily than before. The work is especially important as governments worldwide prepare for a predicted pandemic of avian influenza.



Writing this week (Oct. 31, 2005) in the online edition of the Proceedings of the National Academies of Science (PNAS), a team of researchers from the University of Wisconsin-Madison and the University of Tokyo report a new way to generate genetically altered influenza virus. The lab-made virus - whose genes are manipulated to disarm its virulent nature - can be seeded into chicken eggs to generate the vaccine used in inoculations, which prepare the human immune system to recognize and defeat the wild viruses that spread among humans in an epidemic or pandemic.

In their report, a team led by UW-Madison virologists Yoshihiro Kawaoka and Gabriele Neumann, describes an improved "reverse genetics" technique that makes it easier to make a seed virus in monkey kidney cells, which, like tiny factories, churn out millions of copies of the disarmed virus to be used to make vaccines.


In nature, viruses commandeer a cell’s reproductive machinery to make new virus particles, which go on to infect other cells and make yet more virus particles. Vaccine makers use a monkey kidney cell line to make non-virulent viruses that serve as the raw material for vaccines. The technique reported by the Wisconsin team improves upon a previous reverse genetics method (developed by Kawaoka’s group in 1999) by significantly reducing the number of plasmid vectors required to ferry viral genes into the monkey kidney cells used to produce the virus particles to make vaccines. "Compared to other types of cells, which are not approved for vaccine production, it is not always easy to introduce plasmids into the monkey kidney cells, which are approved for such use," says Kawaoka, an influenza expert and a professor of pathobiological sciences in UW-Madison’s School of Veterinary Medicine. Monkey kidney cells are used routinely for generation of seed strains for vaccine production because they are not known to carry any unknown infectious agents and do not cause tumors.

According to Kawaoka, "application of the new system may be especially advantageous in situations of outbreaks of highly pathogenic avian influenza viruses."

When a new strain of highly virulent influenza emerges to infect humans, vaccine makers must tailor their vaccines to match it because, genetically, the virus is always different. The process is a race against time and can take months depending on how quickly new strains are identified, genetically disarmed and subsequently generated in the lab for use to make vaccines in large quantities. The new technique promises to ensure ready generation of seed strains for the production of vaccines required to blunt the spread of influenza. In the event of an outbreak of especially virulent strains of influenza, such as the H5N1 or "bird flu" viruses now being monitored by scientists, any efficiency in the manufacture of vaccines will be important.

The method devised by Kawaoka and his colleagues reduces the number of plasmids required to introduce viral genes into the monkey kidney cell lines used to mass produce the deactivated virus for use in vaccine manufacture. "By reducing the number of plasmids, we increase the efficiency of virus production," Kawaoka explains.

In addition to Kawaoka, the new PNAS report was authored by Neumann of the UW-Madison School of Veterinary Medicine, Ken Fujii of the University of Tokyo’s Institute of Medical Sciences, and Yoichiro Kino of Japan’s Chemo-Sero Therapeutic Research Institute. The work was funded by grants from the U.S. National Institutes of Health, the Ministries of Education, Culture, Sports, Science and Technology of Japan, and by the Core Research for Evolutional Science and Technology.

Yoshihiro Kawaoka | EurekAlert!
Further information:
http://www.vetmed.wisc.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>