Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sniper Treatment Spells Significant breakthrough in approach to Cancer

26.10.2005


  • Targeted cancer treatment without the added trauma of surgery or lengthy chemotherapy could be available to consumers in as little as 5 years according to new scientific research

  • Treatment could benefit NHS as a whole by reducing the cost in the long term of treating cancer patients

  • Treatment benefits the majority of Cancers unlike Herceptin which only works for Breast Cancer

Scientists at the University of Dundee have demonstrated that cancer cells can be targeted and destroyed by a single blast of ultrasound according to an article published in leading scientific journal "Nature-Physics". Military technology has been used to develop and prove this ground breaking technique that will end the need for traumatic surgery and extensive drug therapy for cancer patients. The treatment is not specific to one particular type of cancer and could subject to clinical trials be available to all cancer patients in as little as 5 years.

Previous research has shown that gas bubbles injected intravenously will naturally cluster around the cancerous cells. The team from Dundee have proved for the first time that when those bubbles are stimulated by a microsecond range burst of high intensity ultrasound energy, the gas bubbles can puncture the cancer cells and kill them. They were able to establish this process beyond doubt using an ultra-fast imaging system, photographing a million frames per second, and developed by the army specifically to observe the impact of ballistic shells and bullets with armour plates.

The research has been led by physicist Dr Paul Campbell at the University of Dundee, and Professor Sir Alfred Cuschieri at the Department of Surgery and Molecular Oncology at Ninewells Hospital in Dundee. Prof Cuschieri is a pioneering figure in the area of keyhole surgery and continues to develop routes to less invasive surgical procedures. Advanced optics involving lasers and holography to hold the gas bubbles close to the tissue plane using only the force of light itself were developed by Paul Prentice, a PhD student with Dr Campbell’s group, in collaboration with Professor Kishan Dholakia at St Andrews University.

Commenting on the research, Dr Paul Campbell said: "Conventional cancer treatment usually requires surgery to cut out the diseased tissues, causing significant trauma, pain and discomfort to the patient, often delaying recovery for extended period of many months. This new ultrasound treatment can focus energy directly to a tumour site inside the body and deliver a single blast of energy, without harming any surrounding tissues."

The ultrasound treatment could eventually make systemic chemotherapy treatments a thing of the past. The gas bubbles injected into the cancer patient can be coated with anti-cancer drugs that then enter the punctured cancer cells. The drugs are therefore targeted to flood only the cancer cells in a one shot process, rather than repeatedly flooding the patient’s entire body with the chemotherapy drugs. Such coated bubbles have already been developed in the United States. This should dramatically reduce the patient’s recovery time and the associated pain and suffering of surgery and chemotherapy.

" It is a sniper treatment for cancer" said Dr Campbell. "The ultrasound activated bubbles target with single cell precision, so that the technique overall is a little like sniping at specific cancer cells, whilst ensuring that healthy tissues remain untouched."

"Our research has proved that the injected gas bubbles react to the ultrasound by instantaneously inflating just like a party balloon. Then they do something quite incredible. The shell of the inflated bubble deforms to develop a fast moving spike directed back into the nearby cancerous cell. When the spike hits the cell membrane it punches through it like a bullet, creating a tiny ’entrance wound’ and allowing passage of molecules, which have included drugs, directly into those cells.

"For low ultrasound intensities, the membranes appear to be able to reseal themselves soon afterwards, effectively locking any drug molecules inside. On the other hand, for higher intensity levels of ultrasound, the damage may be so severe that the cancer cells can be killed outright."

The research, which represents the culmination of a three year project funded by the UK Engineering and Physical Sciences Research Council (EPSRC) to the tune of over £630,000, has also involved direct collaboration with a world-leading molecular delivery group at the Georgia Institute of Technology in Atlanta, USA.

"What we have achieved here is an important step forward in our understanding of the processes at large. In order to fully capitalise on this new knowledge however, it is critical that we achieve further funding to push the boundaries of this technology into fullscale clinical trials on humans.

"The benefits are clear: no incisions, no scars, no trauma and a much reduced chance of MRSA infection. This approach could represent the future of surgery and we certainly have the drive and indeed expertise to see this through given the opportunity."

Dr Campbell believes this is a win win situation for everyone concerned: "Not only will this benefit patient but the NHS as a whole by reducing the cost in the long term of treating cancer patients. Hospitals would be able to perform the treatment by undertaking minor modifications to their existing ultrasound equipment"

Roddy Isles | alfa
Further information:
http://www.dundee.ac.uk
http://www.nature.com/nphys/journal/v1/n1/index.html

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>