Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sniper Treatment Spells Significant breakthrough in approach to Cancer

26.10.2005


  • Targeted cancer treatment without the added trauma of surgery or lengthy chemotherapy could be available to consumers in as little as 5 years according to new scientific research

  • Treatment could benefit NHS as a whole by reducing the cost in the long term of treating cancer patients

  • Treatment benefits the majority of Cancers unlike Herceptin which only works for Breast Cancer

Scientists at the University of Dundee have demonstrated that cancer cells can be targeted and destroyed by a single blast of ultrasound according to an article published in leading scientific journal "Nature-Physics". Military technology has been used to develop and prove this ground breaking technique that will end the need for traumatic surgery and extensive drug therapy for cancer patients. The treatment is not specific to one particular type of cancer and could subject to clinical trials be available to all cancer patients in as little as 5 years.

Previous research has shown that gas bubbles injected intravenously will naturally cluster around the cancerous cells. The team from Dundee have proved for the first time that when those bubbles are stimulated by a microsecond range burst of high intensity ultrasound energy, the gas bubbles can puncture the cancer cells and kill them. They were able to establish this process beyond doubt using an ultra-fast imaging system, photographing a million frames per second, and developed by the army specifically to observe the impact of ballistic shells and bullets with armour plates.

The research has been led by physicist Dr Paul Campbell at the University of Dundee, and Professor Sir Alfred Cuschieri at the Department of Surgery and Molecular Oncology at Ninewells Hospital in Dundee. Prof Cuschieri is a pioneering figure in the area of keyhole surgery and continues to develop routes to less invasive surgical procedures. Advanced optics involving lasers and holography to hold the gas bubbles close to the tissue plane using only the force of light itself were developed by Paul Prentice, a PhD student with Dr Campbell’s group, in collaboration with Professor Kishan Dholakia at St Andrews University.

Commenting on the research, Dr Paul Campbell said: "Conventional cancer treatment usually requires surgery to cut out the diseased tissues, causing significant trauma, pain and discomfort to the patient, often delaying recovery for extended period of many months. This new ultrasound treatment can focus energy directly to a tumour site inside the body and deliver a single blast of energy, without harming any surrounding tissues."

The ultrasound treatment could eventually make systemic chemotherapy treatments a thing of the past. The gas bubbles injected into the cancer patient can be coated with anti-cancer drugs that then enter the punctured cancer cells. The drugs are therefore targeted to flood only the cancer cells in a one shot process, rather than repeatedly flooding the patient’s entire body with the chemotherapy drugs. Such coated bubbles have already been developed in the United States. This should dramatically reduce the patient’s recovery time and the associated pain and suffering of surgery and chemotherapy.

" It is a sniper treatment for cancer" said Dr Campbell. "The ultrasound activated bubbles target with single cell precision, so that the technique overall is a little like sniping at specific cancer cells, whilst ensuring that healthy tissues remain untouched."

"Our research has proved that the injected gas bubbles react to the ultrasound by instantaneously inflating just like a party balloon. Then they do something quite incredible. The shell of the inflated bubble deforms to develop a fast moving spike directed back into the nearby cancerous cell. When the spike hits the cell membrane it punches through it like a bullet, creating a tiny ’entrance wound’ and allowing passage of molecules, which have included drugs, directly into those cells.

"For low ultrasound intensities, the membranes appear to be able to reseal themselves soon afterwards, effectively locking any drug molecules inside. On the other hand, for higher intensity levels of ultrasound, the damage may be so severe that the cancer cells can be killed outright."

The research, which represents the culmination of a three year project funded by the UK Engineering and Physical Sciences Research Council (EPSRC) to the tune of over £630,000, has also involved direct collaboration with a world-leading molecular delivery group at the Georgia Institute of Technology in Atlanta, USA.

"What we have achieved here is an important step forward in our understanding of the processes at large. In order to fully capitalise on this new knowledge however, it is critical that we achieve further funding to push the boundaries of this technology into fullscale clinical trials on humans.

"The benefits are clear: no incisions, no scars, no trauma and a much reduced chance of MRSA infection. This approach could represent the future of surgery and we certainly have the drive and indeed expertise to see this through given the opportunity."

Dr Campbell believes this is a win win situation for everyone concerned: "Not only will this benefit patient but the NHS as a whole by reducing the cost in the long term of treating cancer patients. Hospitals would be able to perform the treatment by undertaking minor modifications to their existing ultrasound equipment"

Roddy Isles | alfa
Further information:
http://www.dundee.ac.uk
http://www.nature.com/nphys/journal/v1/n1/index.html

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>