Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sniper Treatment Spells Significant breakthrough in approach to Cancer

26.10.2005


  • Targeted cancer treatment without the added trauma of surgery or lengthy chemotherapy could be available to consumers in as little as 5 years according to new scientific research

  • Treatment could benefit NHS as a whole by reducing the cost in the long term of treating cancer patients

  • Treatment benefits the majority of Cancers unlike Herceptin which only works for Breast Cancer

Scientists at the University of Dundee have demonstrated that cancer cells can be targeted and destroyed by a single blast of ultrasound according to an article published in leading scientific journal "Nature-Physics". Military technology has been used to develop and prove this ground breaking technique that will end the need for traumatic surgery and extensive drug therapy for cancer patients. The treatment is not specific to one particular type of cancer and could subject to clinical trials be available to all cancer patients in as little as 5 years.

Previous research has shown that gas bubbles injected intravenously will naturally cluster around the cancerous cells. The team from Dundee have proved for the first time that when those bubbles are stimulated by a microsecond range burst of high intensity ultrasound energy, the gas bubbles can puncture the cancer cells and kill them. They were able to establish this process beyond doubt using an ultra-fast imaging system, photographing a million frames per second, and developed by the army specifically to observe the impact of ballistic shells and bullets with armour plates.

The research has been led by physicist Dr Paul Campbell at the University of Dundee, and Professor Sir Alfred Cuschieri at the Department of Surgery and Molecular Oncology at Ninewells Hospital in Dundee. Prof Cuschieri is a pioneering figure in the area of keyhole surgery and continues to develop routes to less invasive surgical procedures. Advanced optics involving lasers and holography to hold the gas bubbles close to the tissue plane using only the force of light itself were developed by Paul Prentice, a PhD student with Dr Campbell’s group, in collaboration with Professor Kishan Dholakia at St Andrews University.

Commenting on the research, Dr Paul Campbell said: "Conventional cancer treatment usually requires surgery to cut out the diseased tissues, causing significant trauma, pain and discomfort to the patient, often delaying recovery for extended period of many months. This new ultrasound treatment can focus energy directly to a tumour site inside the body and deliver a single blast of energy, without harming any surrounding tissues."

The ultrasound treatment could eventually make systemic chemotherapy treatments a thing of the past. The gas bubbles injected into the cancer patient can be coated with anti-cancer drugs that then enter the punctured cancer cells. The drugs are therefore targeted to flood only the cancer cells in a one shot process, rather than repeatedly flooding the patient’s entire body with the chemotherapy drugs. Such coated bubbles have already been developed in the United States. This should dramatically reduce the patient’s recovery time and the associated pain and suffering of surgery and chemotherapy.

" It is a sniper treatment for cancer" said Dr Campbell. "The ultrasound activated bubbles target with single cell precision, so that the technique overall is a little like sniping at specific cancer cells, whilst ensuring that healthy tissues remain untouched."

"Our research has proved that the injected gas bubbles react to the ultrasound by instantaneously inflating just like a party balloon. Then they do something quite incredible. The shell of the inflated bubble deforms to develop a fast moving spike directed back into the nearby cancerous cell. When the spike hits the cell membrane it punches through it like a bullet, creating a tiny ’entrance wound’ and allowing passage of molecules, which have included drugs, directly into those cells.

"For low ultrasound intensities, the membranes appear to be able to reseal themselves soon afterwards, effectively locking any drug molecules inside. On the other hand, for higher intensity levels of ultrasound, the damage may be so severe that the cancer cells can be killed outright."

The research, which represents the culmination of a three year project funded by the UK Engineering and Physical Sciences Research Council (EPSRC) to the tune of over £630,000, has also involved direct collaboration with a world-leading molecular delivery group at the Georgia Institute of Technology in Atlanta, USA.

"What we have achieved here is an important step forward in our understanding of the processes at large. In order to fully capitalise on this new knowledge however, it is critical that we achieve further funding to push the boundaries of this technology into fullscale clinical trials on humans.

"The benefits are clear: no incisions, no scars, no trauma and a much reduced chance of MRSA infection. This approach could represent the future of surgery and we certainly have the drive and indeed expertise to see this through given the opportunity."

Dr Campbell believes this is a win win situation for everyone concerned: "Not only will this benefit patient but the NHS as a whole by reducing the cost in the long term of treating cancer patients. Hospitals would be able to perform the treatment by undertaking minor modifications to their existing ultrasound equipment"

Roddy Isles | alfa
Further information:
http://www.dundee.ac.uk
http://www.nature.com/nphys/journal/v1/n1/index.html

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Morbid Obesity: Gastric Bypass and Sleeve Gastrectomy Are Comparable

17.01.2018 | Health and Medicine

Researchers identify new way to unmask melanoma cells to the immune system

17.01.2018 | Health and Medicine

Genetic discovery may help better identify children at risk for type 1 diabetes

17.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>