Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surgery enters virtual world

25.10.2005


Hip replacement outcomes could become far more predictable thanks to a revolutionary virtual surgery system developed by European researchers.



The IST-funded MULTISENSE project combined virtual reality, force-feedback systems, tissue profiling and stereoscopic vision to create virtual patients that mimic the tissue of real patients. Surgeons can now perform a hip-replacement operation on a virtual copy of their real patient.

More importantly, after the virtual surgery doctors can get a read-out indicating the likely success of the operation. This is a major step forward for prosthetic orthopaedics.


"Right now, many implants fail, but for some of them we’ve no definite idea about why they fail," says MULTISENSE scientific coordinator Cinzia Zannoni, a researcher at CINECA. "The really unique aspect of MULTISENSE is that it will give an indication of if an implant in a particular patient will fail." Surgeons can then test another implant to determine if that has a better chance of success.

The key to the MULTISENSE system is the Muscular Modelling tool. This is a semi-automatic modelling function that takes data from CT scans to make a virtual reconstruction of an individual patients’ muscle tissue.

"We have to customise the system to model the tissue of the individual patient to get an accurate indication of the probable outcome before each virtual surgery," says Zannoni.

It’s a very advanced application of virtual reality. Up to now, most medical systems simply replicated specific conditions, like appendicitis, for educational uses. The MULTISENSE system is tailored to specific patients.

The Muscle Modelling system is tied to a haptic, or force-feedback, system. Medical haptics are a vast advance on the feedback system used in the joysticks of games consoles. These devices create the force and resistance of real tissue, so when surgeons make a cut they feel the sensation of real surgery.

Add to that a stereoscopic viewing system and doctors can see, and feel, the surgery during the planning stage.

The haptic and virtual reality systems can also be voice controlled using simple commands. "A doctor would say ’I’m cutting the skin’ or, ’I’m lifting the muscle’, and the haptic system will adjust the force and pressure to suit that stage of the operation," says Zannoni. It means the operation is as close to reality as is possible with current systems.

The system could prove very cost effective if it reduces the number of implant failures, particularly since predictions indicate that hip implants will grow with Europe’s ageing population.

In the future, MULTISENSE could also be adapted to work in Computer-Aided Surgery. "We designed our system to work at every stage of the operation, from planning to actual surgery. Right now it will be used only for planning the surgery, but if there is a need it could help doctors to perform operations, too."

This is a growing are in medical science, with doctors increasingly taking advantage of the precision of robotic arms, for example.

The system could also be used for other surgeries, though MULTISENSE currently has no plans to develop them. Currently surgeons are evaluating the prototype. Once that’s completed, Italian company SCS-B3C will commercialise the software and the system. The haptic research will be exploited by a British company,” says Zannoni.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>