Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Near infrared laser device can measure brain oxygen levels

24.10.2005


A new device that uses near-infrared light to non-invasively monitor the oxygenation of the brain during surgery appears to be a promising alternative to the more invasive techniques currently in use, according to a new study by Duke University Medical Center anesthesiologists.



The researchers said their findings offer the potential for accurate and reliable monitoring of brain oxygenation during cardiac surgeries, to more effectively protect the brain against reduced oxygen levels, or anoxia, which is known to cause cognitive impairment in some surgical patients.

During some surgeries anesthesiologists measure venous oxygenation by periodically removing blood samples from catheters inserted in major blood vessels in the neck and then analyze the samples by co-oximetry. Also, anesthesiologists frequently use a pulse oximeter, attached to the patient’s finger, to measure arterial blood oxygenation. However, since these measurements are taken on blood outside the brain, physicians can only estimate the level of cerebral oxygenation.


Designed by CAS Medical Systems, Inc., the monitor, called a cerebral oximeter, uses one or more sensors attached to the forehead that emit non-harmful, low-level laser light through the skin and skull into the brain. Since the near-infrared light absorption characteristics of the hemoglobin in red blood cells are known, the system can calculate the brain tissue oxygen saturation by measuring the differences in intensity of light as it passes through the brain. When combined with pulse oximetry, the cerebral oximeter may be used to estimate the cerebral venous oxygen saturation.

The basic principle of cerebral oximetry is based on optical spectroscopy techniques. The discovery that near-infrared light can pass through the scalp and skull to examine levels of hemoglobin and other light absorbing compounds of the brain was made at Duke by Frans Jobsis, Ph.D., in 1977.

"It has always been a challenge to directly measure the oxygen levels in the brain," said Duke anesthesiologist David MacLeod, M.D., who presented the results of the Duke study Oct. 22, 2005, at the annual scientific sessions of the American Society of Anesthesiologists in Atlanta. "The main issues with the invasive approach are that it does not provide specific information in real time, and it is of course invasive, which can carry some risk to the patient.

"This new technology, which is non-invasive and provides real-time information, appears to be an accurate means for measuring cerebral oxygenation and indirectly cerebral perfusion," MacLeod said. "As anesthesiologists, protecting the brain from potential harm is one of the main functions we perform during a surgical procedure."

For their study, the researchers enrolled 12 healthy volunteers. The volunteers were monitored using the different blood oxygenation measurement systems – pulse oximetry, jugular and radial arterial co-oximetry, and the prototype cerebral oximeter. In a stepwise fashion, the researchers decreased and then increased the concentration of inhaled oxygen through a range of 70 to 100 percent arterial blood oxygen saturation. Frequent, concurrent measurements were made on all three systems throughout the process.

"We made a total of 171 readings and found a strong correlation between the reference co-oximetry measurements by the invasive methods to the non-invasive approaches," MacLeod said. "So it appears that we can use non-invasive approaches to estimate something we could in the past only measure with invasive sampling."

While pulse oximetry is used universally to measure arterial oxygen saturation for all patients undergoing surgery, interest in cerebral oxygenation levels have mainly been the domain of cardiac surgeons and anesthesiologists, according to MacLeod, given the rising concerns about potential cognitive impairments suffered by some patients undergoing open heart surgery.

Following this successful validation of the CAS cerebral oximeter, the Duke team is conducting a clinical trial to refine the optimal range of cerebral oxygenation in patients undergoing heart surgery. After surgery these patients will be periodically assessed to detect any correlation between cerebral oxygen levels during surgery and post-op changes in cognition.

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>