Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precision radiation therapy yields rare success for liver tumors

19.10.2005


Shaped-beam radiation therapy is a promising treatment for life-threatening metastatic liver tumors, according to researchers at the University of Rochester Medical Center who report an 88 percent success rate for controlling the lesions. This is the first evidence that doctors can treat these tumors with radiation, and the results doubled the average length of survival.



"Radiation therapy has not been a recommended treatment for liver metastases because of the poor results when whole-liver radiation was used," said Alan Katz, M.D., M.P.H., lead researcher and assistant professor of Radiation Oncology. "High-dose, precision radiation therapy is proving to be a promising therapy for metastatic liver disease and provides an effective treatment option for patients who previously didn’t have any."

Radiation oncologists at the University’s James P. Wilmot Cancer Center are leading the effort to expand shaped-beam radiation therapy – originally designed to treat brain tumors – to target metastatic liver tumors with pinpoint accuracy. Initial treatment results were presented this week at the American Society for Therapeutic Radiology and Oncology’s annual meeting in Denver.


Many forms of cancer are treated with radiation therapy, but tumors in the liver are difficult to target using conventional techniques because the organ moves during breathing. Shaped-beam radiation therapy, also known as stereotactic body radiation therapy, has expanded treatment options by delivering a high dose of radiation precisely to the tumor, while limiting the damage to healthy tissue surrounding the tumor.

In Rochester, doctors treated 72 patients with metastatic liver lesions between April 2001 and October 2004. Most of the patients had colorectal, breast, pancreatic, lung, genitourinary, esophageal and ovarian cancers, which had spread to the liver. The patients had a median of two lesions that ranged from 0.5 centimeters to 12.2 centimeters in diameter.

Doctors followed the patients’ progress for an average of a year, though some were followed as long as three years, and the average survival was 13 months.

"This is remarkable. For people who are facing this deadly disease, doubling the length of survival brings hope to our patients and that is so important," Katz said.

Katz led the research, along with Paul Okunieff, M.D., chair of Radiation Oncology, Michael Schell, Ph.D., Christine Huggins, Ph.D., and Madeleine Carey Sampson, M.D.

The Wilmot Cancer Center has been leading the research into expanding the use of stereotactic radiation therapy to treat tumors throughout the body. For the past five years, radiation oncologists have been studying its use in treating a variety of primary and metastatic tumors throughout the body and developing models for delivering radiation to organs that cannot be immobilized, such as the lungs and liver.

Leslie White | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>