Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precision radiation therapy yields rare success for liver tumors

19.10.2005


Shaped-beam radiation therapy is a promising treatment for life-threatening metastatic liver tumors, according to researchers at the University of Rochester Medical Center who report an 88 percent success rate for controlling the lesions. This is the first evidence that doctors can treat these tumors with radiation, and the results doubled the average length of survival.



"Radiation therapy has not been a recommended treatment for liver metastases because of the poor results when whole-liver radiation was used," said Alan Katz, M.D., M.P.H., lead researcher and assistant professor of Radiation Oncology. "High-dose, precision radiation therapy is proving to be a promising therapy for metastatic liver disease and provides an effective treatment option for patients who previously didn’t have any."

Radiation oncologists at the University’s James P. Wilmot Cancer Center are leading the effort to expand shaped-beam radiation therapy – originally designed to treat brain tumors – to target metastatic liver tumors with pinpoint accuracy. Initial treatment results were presented this week at the American Society for Therapeutic Radiology and Oncology’s annual meeting in Denver.


Many forms of cancer are treated with radiation therapy, but tumors in the liver are difficult to target using conventional techniques because the organ moves during breathing. Shaped-beam radiation therapy, also known as stereotactic body radiation therapy, has expanded treatment options by delivering a high dose of radiation precisely to the tumor, while limiting the damage to healthy tissue surrounding the tumor.

In Rochester, doctors treated 72 patients with metastatic liver lesions between April 2001 and October 2004. Most of the patients had colorectal, breast, pancreatic, lung, genitourinary, esophageal and ovarian cancers, which had spread to the liver. The patients had a median of two lesions that ranged from 0.5 centimeters to 12.2 centimeters in diameter.

Doctors followed the patients’ progress for an average of a year, though some were followed as long as three years, and the average survival was 13 months.

"This is remarkable. For people who are facing this deadly disease, doubling the length of survival brings hope to our patients and that is so important," Katz said.

Katz led the research, along with Paul Okunieff, M.D., chair of Radiation Oncology, Michael Schell, Ph.D., Christine Huggins, Ph.D., and Madeleine Carey Sampson, M.D.

The Wilmot Cancer Center has been leading the research into expanding the use of stereotactic radiation therapy to treat tumors throughout the body. For the past five years, radiation oncologists have been studying its use in treating a variety of primary and metastatic tumors throughout the body and developing models for delivering radiation to organs that cannot be immobilized, such as the lungs and liver.

Leslie White | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>