Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice provide insight into therapy-induced cancers in humans

18.10.2005


Scientists have developed a new tool that may prove to be invaluable for investigating the long-term mutagenic effects of chemotherapy and radiation, therapies that are widely used for the treatment of cancer. The research study, published in the October issue of Cancer Cell, provides evidence that a genetically engineered mouse model faithfully recapitulates treatment-associated cancers that occur in humans and may be useful for investigating the mechanisms involved in the development of therapy-induced cancers and for testing preventive strategies.

Secondary malignant neoplasms (SMNs) are new cancers that patients develop as a result of having received chemotherapy or radiation to treat a different type of cancer that may have occurred years earlier. To make matters worse, many of these secondary cancers are notoriously resistant to treatment. The occurrence of SMNs is a serious concern for doctors and patients, as the use of intensive radiation and chemotherapy has been more successful in curing primary cancers and has dramatically increased survival rates in children and adults. Unfortunately, as a result of treatment success, the incidence of SMNs has also risen. "The lack of relevant animal models of SMNs has impeded efforts to understand how mutagenic cancer therapeutics induce tumors in vivo, and to test preventive strategies," explains study author Dr. Kevin Shannon, a pediatric oncologist at the University of California, San Francisco.

Dr. Shannon and colleagues used a strain of mice developed in the laboratory of Dr. Tyler Jacks that carry a mutation in a tumor suppressor gene called Nf1. They selected this strain based on clinical data suggesting that humans who inherit this mutation are predisposed to SMNs. Nf1 mutant mice that were exposed to radiation, or radiation combined with chemotherapy, developed secondary cancers that are common in humans including leukemia, sarcoma, and breast cancers. "These animals develop a similar spectrum of malignancies as human patients who are treated with radiation and alkylating agents, and provide a tractable system for performing mechanistic studies, for comparing the mutagenic potential of different regimens, and for testing preventive strategies," offers Dr. Shannon. The study authors also suggest that this mouse model may be useful for testing novel therapeutic strategies for tumors that are resistant to conventional cancer therapies.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com
http://www.cancercell.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>