Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advances in wireless biosensor technology: Subcutaneous sensors will provide even more accurate data on patient health

18.10.2005


Led by Professor Jukka Lekkala, the Wireless research project is developing miniscule subcutaneous sensors, which can be used to monitor, for example, the function of the heart or prosthetic joints even over long periods of time. The Academy of Finland is funding the project, whose goal is to provide the more accurate prediction of changes in patient condition and, in turn, even save lives. ”For example, a subcutaneous EKG monitor will be able to detect cardiac arrhythmia, and the data for this can then be transmitted wirelessly to the physician’s mobile phone or PC,” explains Lekkala.



At present patient health status is primarily monitored with supercutaneous sensors. However, wearable and, in particular, implantable, or subcutaneous, biosensors will provide significant advantages over more conventional methods. The biggest problem with conventional measuring systems is poor skin sensor contact. In subcutaneous measuring systems the sensor-to-body contact is more stable. Furthermore, external electrical interference of the measurement signal is reduced, which improves the measurement result. Health care costs are saved, when monitoring is not time and place-dependent: patients will no longer have to make an appointment with the physician for a consultation or tests. Patients under remote supervision can continue living their normal lives for a longer period of time.

This new technology also makes possible measurements and long-term monitoring, which would be practically impossible using existing technologies. For example, the condition of a prosthetic hip joint can now only be monitored using expensive x-ray imaging-based methods.


Subcutaneous biosensors must not cause problems for the patient

The Wireless research project is also producing new data on the design of subcutaneous biosensors. These should be as small as possible. The integration of electronics and development of packaging technologies make it possible to manufacture sensors and electronics on a silicon chip no bigger than a fingernail. Due to its light weight and small size several of these types of chips can be implanted in a sizable area. The sensors might also contain various microsensors, measurement electronics and wireless communication circuits.

In addition to the small size, the packaging is also challenged by the environment into which it is placed. The Wireless research project is developing sensors and technologies which pose no risk to the patient’s health. ”The work is extremely challenging, because the electronics have to work reliably for long periods of time under the skin, in a moist, corrosive environment, and they must not pose any health hazards, even if the protective coating were to be damaged for some reason,” explains Lekkala.

Advances in biomaterial technologies allow the biocompatible coatings of sensors to be customised for each application. It is even possible to incorporate functional elements, such as by enhancing the implant coating with a layer that releases antibiotics. Sensors should also be flexible, so that they can follow the patient’s movements. This requires that the sensor circuit boards are flexible and its components are thin enough to bend with the circuit board. A silicon chip reduced to a thickness of less than 0.1 millimetre will be flexible. When this flexible package is coated with a thin, protective and biocompatible material, the entire unit will effectively flex with and withstand the patient’s movements while implanted.

Wireless combines electronics, biomaterials and health research

The Wireless research project exploits the know-how of experts from five different fields. In Finland this pioneering group unites experts in physiological modelling, biomaterial technologies, biosensors, wireless communications and electronics packaging technologies. The sensors, which are being developed in Tampere, are expected to be used in major medical, social and commercial application. The project is part of the Academy of Finland Future Electronics (TULE) Research Programme.

Terhi Loukiainen | alfa
Further information:
http://www.aka.fi

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>