Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advances in wireless biosensor technology: Subcutaneous sensors will provide even more accurate data on patient health

18.10.2005


Led by Professor Jukka Lekkala, the Wireless research project is developing miniscule subcutaneous sensors, which can be used to monitor, for example, the function of the heart or prosthetic joints even over long periods of time. The Academy of Finland is funding the project, whose goal is to provide the more accurate prediction of changes in patient condition and, in turn, even save lives. ”For example, a subcutaneous EKG monitor will be able to detect cardiac arrhythmia, and the data for this can then be transmitted wirelessly to the physician’s mobile phone or PC,” explains Lekkala.



At present patient health status is primarily monitored with supercutaneous sensors. However, wearable and, in particular, implantable, or subcutaneous, biosensors will provide significant advantages over more conventional methods. The biggest problem with conventional measuring systems is poor skin sensor contact. In subcutaneous measuring systems the sensor-to-body contact is more stable. Furthermore, external electrical interference of the measurement signal is reduced, which improves the measurement result. Health care costs are saved, when monitoring is not time and place-dependent: patients will no longer have to make an appointment with the physician for a consultation or tests. Patients under remote supervision can continue living their normal lives for a longer period of time.

This new technology also makes possible measurements and long-term monitoring, which would be practically impossible using existing technologies. For example, the condition of a prosthetic hip joint can now only be monitored using expensive x-ray imaging-based methods.


Subcutaneous biosensors must not cause problems for the patient

The Wireless research project is also producing new data on the design of subcutaneous biosensors. These should be as small as possible. The integration of electronics and development of packaging technologies make it possible to manufacture sensors and electronics on a silicon chip no bigger than a fingernail. Due to its light weight and small size several of these types of chips can be implanted in a sizable area. The sensors might also contain various microsensors, measurement electronics and wireless communication circuits.

In addition to the small size, the packaging is also challenged by the environment into which it is placed. The Wireless research project is developing sensors and technologies which pose no risk to the patient’s health. ”The work is extremely challenging, because the electronics have to work reliably for long periods of time under the skin, in a moist, corrosive environment, and they must not pose any health hazards, even if the protective coating were to be damaged for some reason,” explains Lekkala.

Advances in biomaterial technologies allow the biocompatible coatings of sensors to be customised for each application. It is even possible to incorporate functional elements, such as by enhancing the implant coating with a layer that releases antibiotics. Sensors should also be flexible, so that they can follow the patient’s movements. This requires that the sensor circuit boards are flexible and its components are thin enough to bend with the circuit board. A silicon chip reduced to a thickness of less than 0.1 millimetre will be flexible. When this flexible package is coated with a thin, protective and biocompatible material, the entire unit will effectively flex with and withstand the patient’s movements while implanted.

Wireless combines electronics, biomaterials and health research

The Wireless research project exploits the know-how of experts from five different fields. In Finland this pioneering group unites experts in physiological modelling, biomaterial technologies, biosensors, wireless communications and electronics packaging technologies. The sensors, which are being developed in Tampere, are expected to be used in major medical, social and commercial application. The project is part of the Academy of Finland Future Electronics (TULE) Research Programme.

Terhi Loukiainen | alfa
Further information:
http://www.aka.fi

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>