Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fetal exposure to toxins could be behind rise in asthma

11.10.2005


Exposure of developing fetuses and newborns to low levels of environmental toxins such as lead, mercury and dioxin, as well as nicotine and ethanol, could be behind the recent sharp rises in asthma, allergies and autoimmune disorders like lupus, says a Cornell University researcher.



The real dangers from environmental toxins most likely occur early in life, said Rod Dietert, professor of immunotoxicology at Cornell’s College of Veterinary Medicine, presenting a paper on the topic Oct. 4 at the 14th Immunotoxicology Summer School Conference in Lyon, France. However, most laboratory studies look at the health effects of the toxins on adult animals.

"We are deluding ourselves to think that adult data are going to allow us to understand the risks of perinatal exposures," said Dietert, referring to the period close to the time of birth. "Right now, we underestimate health risks that are occurring due to early exposure."


He advocates a more detailed two-generation screening in which information on toxins and their impact on immune systems is recorded not only for the adult mother but also for her offspring. It had been previously thought that adult-exposure safety testing when coupled with superficial two-generational tests could predict the health risks for adults as well as fetuses and children. But it is now clear that current safety testing lacks the ability to detect many early life immunotoxic changes, including those leading to allergy and autoimmunity -- an immune state in which antibodies are formed against a person’s own body tissues.

One issue resulting from early exposure to environmental toxins and drugs involves two types of immune system helper cells: T helper 1 (Th1) and Th2. Th1 cells are involved in countering cancer and they attack pathogens, from viruses to intracellular bacteria, that get inside cells. Th2 cells promote release of some antibodies to counter such extracellular pathogens as bacteria and parasites. However, Th2 cell responses can result in the overproduction of antibodies called IgE antibodies, which are implicated in producing allergic responses. Throughout pregnancy, both the fetus and mother have inhibited Th1 responses to prevent a fetal-maternal mutual immune attack that would lead to miscarriage. As soon as the baby is born, however, a healthy infant’s immune system quickly increases Th1 capacity so that levels are roughly balanced with those of Th2.

"Exposure to certain drugs and chemicals in the last trimester can really mess things up," said Dietert. There is some evidence that low doses of lead, mercury, ethanol or drugs like dexamethasone (a common steroid) can permanently keep an immune system in a late gestational Th2-promoting stage that is out of balance for responses later in life. Yet, the same low doses of these agents do not impair an adult immune system, Dietert said.

"I think this goes a long way toward explaining the epidemic rises in allergies and autoimmune disorders," said Dietert. When an infant’s immune system remains biased toward Th2 responses because of toxin exposure and never matures its own Th1 capacity, the baby develops a higher risk, not only for asthma and allergies during childhood but also for autoimmune diseases and comprised antiviral and anticancer responses in later life.

In his talk, Dietert pointed out the types of errors that can occur by relying on adult-safety data only. For example, far lower doses of toxins induce chemical changes in a fetus’s immune system compared with an adult’s, and exposure to these toxins during the perinatal period produces a broader number of effects than in adults.

Dietert outlined seven windows during development when exposure to low levels of toxins can have long-term impacts and are not modeled in the adult. For example, lead can interfere with immune-dependent reproductive development; dioxin or nicotine around birth can prevent the crucial maturation steps of certain immune cells, called dendritic cells; and ethanol can impair the ability of immune cells called macrophages to mature in response to lung surfactant proteins that are produced just before birth.

The American Chemistry Council, the U.S. Department of Agriculture and the National Institute of Environmental Health Sciences funded the study.

Blaine Friedlander Jr. | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Health and Medicine:

nachricht Dengue takes low and slow approach to replication
12.01.2018 | Duke University

nachricht Fast food makes the immune system more aggressive in the long term
12.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>