Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AIDS inflicts specific pattern of brain damage, reveals UCLA/Pittsburgh imaging study

11.10.2005


Antiretroviral drugs don’t halt damage



A new UCLA/University of Pittsburgh imaging study for the first time shows the selective pattern of destruction inflicted by AIDS on brain regions that control motor, language and sensory functions. High-resolution 3-D color scans created from magnetic resonance images (MRI) vividly illustrate the damage.

Published Oct. 10 by the online Proceedings of the National Academy of Sciences, the research offers a new way to measure the impact of AIDS on the living brain, and reveals that the brain is still vulnerable to infection when patients are receiving highly active antiretroviral therapy (HAART).


"Two big surprises came out of this study," explained Paul Thompson, Ph.D., first author and associate professor of neurology at the David Geffen School of Medicine at UCLA. "First, that AIDS is selective in how it attacks the brain. Second, drug therapy does not appear to slow the damage. The brain provides a sanctuary for HIV where most drugs cannot follow."

Thompson’s laboratory used a new 3-D brain-mapping technique developed at UCLA to analyze the MRIs of 26 people diagnosed with AIDS, and then compared the scans to those of 14 HIV-negative people. The brain scans measured the thickness of gray matter in various regions of the cerebral cortex.

The University of Pittsburgh diagnosed and scanned the AIDS patients; all 26 subjects had lost at least half of their T-cells, the immune cells targeted by HIV. None had experienced AIDS-related dementia, and 13 were on HAART.

The striking differences between the AIDS patients’ and the control subjects’ brain scans were easy to see on the detailed 3-D images. Areas of tissue loss glowed red and yellow, while intact regions shone blue and green.

The researchers were surprised to discover that AIDS consistently injured the brain’s motor, language and judgment centers, but left other areas alone. Specific patterns of tissue damage directly correlated with patients’ physical and mental symptoms, including impaired motor coordination and slowed reflexes.

"The brain scan really catches AIDS red-handed, allowing us to see precisely where the damage is," Thompson observed. "For the first time, we can understand why motor skills deteriorate with AIDS, because the virus attacks the motor centers on top of the brain."

"We saw up to a 15-percent tissue loss in the brain centers that regulate motor skills, such as movement and coordination," added Thompson. "This helps explain the slowed reflexes and disruption of balance and gait that often affect people with early AIDS."

The UCLA team also linked thinning of the language cortex and reasoning center to depletion of T-cells from the immune system. The finding may shed light on why AIDS is often accompanied by mild vocabulary loss, judgment problems and difficulty planning. As the disease advances, these symptoms can worsen into memory loss and dementia similar to Alzheimer’s disease.

"Tissue loss follows T-cell loss, meaning that people with poor immune function also show severe brain damage," explained Thompson. "This was a revelation. We used to consider these separate phenomena, because HIV harms the brain and immune system in different ways. Now we see they are intrinsically linked."

"This is an exciting finding, not only because we can now see the effects of HIV/AIDS on the cortex, but also because it reinforces the importance of using sophisticated neuroimaging measurements as biomarkers for the effects of the virus on the brain," said James Becker, Ph.D., professor of psychiatry, neurology and psychology at the University of Pittsburgh. "Techniques such as these may also prove useful in evaluating the effects of HIV-medications on the brain."

The researchers were most startled to see no difference in tissue loss between the patients taking HAART and those who were not.

"This was the most terrifying aspect of our findings," said Thompson. "Even though antiretroviral drugs rescue the immune system, AIDS is still stalking the brain. A protective blood barrier prevents drugs from entering the brain, transforming it into a reservoir where HIV can multiply and attack cells unchecked."

The scientists hail brain imaging as a useful method for monitoring AIDS and evaluating new drugs’ effect on disease progression. The technique can be powerfully applied to gauge patients’ response to therapy, even before the onset of dementia or opportunistic infections.

"Brain mapping can help physicians monitor patients with more accurate detail than they can obtain by counting T-cells," said Thompson. "The scans also can test new drugs’ ability to penetrate the brain during clinical trials."

One in 100 people aged 15 to 49 is infected with HIV, the fourth leading cause of death worldwide. In 2004, 40 million people were living with the disease. Forty percent of AIDS patients suffer from progressive neurological symptoms, typically leading to death.

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>