Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AIDS inflicts specific pattern of brain damage, reveals UCLA/Pittsburgh imaging study

11.10.2005


Antiretroviral drugs don’t halt damage



A new UCLA/University of Pittsburgh imaging study for the first time shows the selective pattern of destruction inflicted by AIDS on brain regions that control motor, language and sensory functions. High-resolution 3-D color scans created from magnetic resonance images (MRI) vividly illustrate the damage.

Published Oct. 10 by the online Proceedings of the National Academy of Sciences, the research offers a new way to measure the impact of AIDS on the living brain, and reveals that the brain is still vulnerable to infection when patients are receiving highly active antiretroviral therapy (HAART).


"Two big surprises came out of this study," explained Paul Thompson, Ph.D., first author and associate professor of neurology at the David Geffen School of Medicine at UCLA. "First, that AIDS is selective in how it attacks the brain. Second, drug therapy does not appear to slow the damage. The brain provides a sanctuary for HIV where most drugs cannot follow."

Thompson’s laboratory used a new 3-D brain-mapping technique developed at UCLA to analyze the MRIs of 26 people diagnosed with AIDS, and then compared the scans to those of 14 HIV-negative people. The brain scans measured the thickness of gray matter in various regions of the cerebral cortex.

The University of Pittsburgh diagnosed and scanned the AIDS patients; all 26 subjects had lost at least half of their T-cells, the immune cells targeted by HIV. None had experienced AIDS-related dementia, and 13 were on HAART.

The striking differences between the AIDS patients’ and the control subjects’ brain scans were easy to see on the detailed 3-D images. Areas of tissue loss glowed red and yellow, while intact regions shone blue and green.

The researchers were surprised to discover that AIDS consistently injured the brain’s motor, language and judgment centers, but left other areas alone. Specific patterns of tissue damage directly correlated with patients’ physical and mental symptoms, including impaired motor coordination and slowed reflexes.

"The brain scan really catches AIDS red-handed, allowing us to see precisely where the damage is," Thompson observed. "For the first time, we can understand why motor skills deteriorate with AIDS, because the virus attacks the motor centers on top of the brain."

"We saw up to a 15-percent tissue loss in the brain centers that regulate motor skills, such as movement and coordination," added Thompson. "This helps explain the slowed reflexes and disruption of balance and gait that often affect people with early AIDS."

The UCLA team also linked thinning of the language cortex and reasoning center to depletion of T-cells from the immune system. The finding may shed light on why AIDS is often accompanied by mild vocabulary loss, judgment problems and difficulty planning. As the disease advances, these symptoms can worsen into memory loss and dementia similar to Alzheimer’s disease.

"Tissue loss follows T-cell loss, meaning that people with poor immune function also show severe brain damage," explained Thompson. "This was a revelation. We used to consider these separate phenomena, because HIV harms the brain and immune system in different ways. Now we see they are intrinsically linked."

"This is an exciting finding, not only because we can now see the effects of HIV/AIDS on the cortex, but also because it reinforces the importance of using sophisticated neuroimaging measurements as biomarkers for the effects of the virus on the brain," said James Becker, Ph.D., professor of psychiatry, neurology and psychology at the University of Pittsburgh. "Techniques such as these may also prove useful in evaluating the effects of HIV-medications on the brain."

The researchers were most startled to see no difference in tissue loss between the patients taking HAART and those who were not.

"This was the most terrifying aspect of our findings," said Thompson. "Even though antiretroviral drugs rescue the immune system, AIDS is still stalking the brain. A protective blood barrier prevents drugs from entering the brain, transforming it into a reservoir where HIV can multiply and attack cells unchecked."

The scientists hail brain imaging as a useful method for monitoring AIDS and evaluating new drugs’ effect on disease progression. The technique can be powerfully applied to gauge patients’ response to therapy, even before the onset of dementia or opportunistic infections.

"Brain mapping can help physicians monitor patients with more accurate detail than they can obtain by counting T-cells," said Thompson. "The scans also can test new drugs’ ability to penetrate the brain during clinical trials."

One in 100 people aged 15 to 49 is infected with HIV, the fourth leading cause of death worldwide. In 2004, 40 million people were living with the disease. Forty percent of AIDS patients suffer from progressive neurological symptoms, typically leading to death.

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>