Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nerve changes from diabetes begin earlier than previously known

30.09.2005


Mayo Clinic research reinforces the importance of blood sugar control from onset of diabetes to prevent nerve damage later



Mayo Clinic researchers have found that subtle change in nerve conduction is the first reliable sign of nerve complications from diabetes and that this change can be measured long before other symptoms or signs of nerve damage develop.

"We’ve found what we believe is the earliest sign of nerve change due to diabetes," says Peter J. Dyck, M.D., Mayo Clinic neurologist and lead researcher on the study. Results were published in the September issue of Diabetes Care. "Changes begin much earlier than previously demonstrated," he says.


About 500 patients from Olmsted County, Minn., home to Mayo Clinic, participated in the longitudinal study, many for 20 years. Patients agreed to periodic measures of their diabetes and measurement of nerve, eye, kidney and blood vessel complications.

About half the people with diabetes develop some type of nerve damage (neuropathy) caused indirectly by high blood sugar levels. Symptoms can include pain, asleep-type numbness, tingling, burning and loss of feeling. Serious complications can include foot ulcers, gangrene, amputations, blindness and kidney failure.

In the study, researchers used various techniques to measure nerve changes, including patient exams, reflex and strength tests, and nerve conduction tests, which measure how quickly nerves carry electrical signals. The nerve conduction tests, over time, provided the most consistent and reliable measures of early nerve damage due to diabetes.

"Even when patients had nerve conduction values well within the normal range, our serial assessments showed steady, unequivocal and statistically significant worsening," says Dr. Dyck.

The nerve conduction measures were corrected for variations in patients’ age, height and weight that could have affected results.

The study focused especially on 90 patients who at first evaluation did not have nerve damage and who had been evaluated at least six times at annual or biannual intervals. The Mayo investigators then tested which measure of neuropathy (nerve conductions, symptoms, neurologic signs, quantitative sensation tests or quantitative autonomic tests) significantly worsened, improved or remained unchanged over the study period. Of the five tests, only nerve conduction showed an unequivocal, highly significant, steady worsening over time.

Dr. Dyck says the study offers insights for diabetes care and future research on treatment.

"The aim should be to prevent neuropathy and the complications of eyes and kidneys rather than to intervene after they develop," says Dr. Dyck. Other studies have shown that rigorous control of blood sugar may prevent and possibly even reverse nerve, eye and kidney complications for people with diabetes.

About 18 million Americans have diabetes. From 60 to 70 percent of people with diabetes develop some type of neuropathy or nerve damage due to the disease, according to the American Diabetes Association. Assuming that no symptoms means good news is dangerous, according to Dr. Dyck. "The study shows that diabetes is insidious from the beginning," he says. Diabetes is like atherosclerosis and hypertension, which develop insidiously and continuously unless controlled. Later, they may result in such severe problems as strokes, heart attacks and gangrene of the feet and legs.

Mayo Clinic research results could also influence the design of future clinical trials on treatment options for diabetes. Because nerve changes begin so early, Dr. Dyck says it will be important for clinical trials to include less severely affected patients and to perform studies over longer periods.

Lisa Lucier | EurekAlert!
Further information:
http://www.mayo.edu
http://www.mayoclinic.com

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>