Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Memorising and reminiscing makes your brain work faster

29.09.2005


Pedagogues and psychologists involved in education are striving to make training more efficient. To achieve this, it would be useful to understand what happens in a trainee’s brain during learning. Only neurophysiologists can sort that out, however, not everything is clear to them yet.



Thus, it can be expected that memorizsation and reminiscence processes (which make the essence of training) should be reflected in changes of the brain’s electrical activity nature. It means that these changes may be recorded with the help of the most traditional brain investigation method - Electroencephalogram (EEG).

The research carried out by physiologists of the Institute of the Human Brain (Russian Academy of Sciences) in St. Petersburg and the Institute of Cognitive Neurology (Modern Academy of Humanities) in Moscow involved 57 persons under investigation – students of the Modern Academy of Humanities aged 17 to 20. They were to learn seven pairs of words – in Russian and in Latin which was previously unknown to them. Each pair of words was presented on the monitor screen for 5 seconds. The students were tested in a minute and a half – Russian words were shown to them and they had to recollect the Latin equivalent. Experimenters recorded students’ EEG through 19 electrodes laid on the head skin in three states: at rest, while memorising information and when extracting the information from memory.


Having analysed the findings, the researchers singled out several frequency ranges where the brain operates. These are the theta (4 to 7 Hz), alpha-1 (7 to 10 Hz), alpha-2 (10 to 13 Hz), beta-1 (13 to 18 Hz), beta-2 (18 to 30 Hz) and gamma (30 to 40 Hz) ranges. In three different states, the researchers compared the brain’s electric activity power in all of these ranges. It has turned out that in the course of word memorising and recollection, the alpha-range power decreases on the greater part of the cortex surface. The alpha rhythm is most distinctly expressed when a person is in a calm wakeful state, but any mental load results in its depression.

The reverse situation is observed as regards to fast rhythms of the brain. When the students fulfill a task, power increases in the beta-2 range and particularly in the gamma range (which is the highest frequency range), this happening across the entire cerebral cortex surface. Physiologists believe this is non-random. They assume that fast cerebral activity correlates with active memory use.

The EEG power increases particularly in quick ranges, just as the alpha-rhythm power decreases – when information is extracted from memory. It can be assumed that this process is more “power-consuming” than that of memorisation.

Under the same conditions, the researchers analysed another EEG parameter - spatial synchronisation, which shows to what extent various areas of cerebral cortex work synchronously at rest and at mental load. The main result is as follows – synchronisation increases in all frequency ranges if memory is actively used. That means that in the course of task solution different areas of cerebral cortex start working in coordination, and the entire brain works as a single whole. Bonds occur not only between different areas of the cortex in one hemisphere, but interhemispheric bonds are also formed. The process is most evident when information is being extracted from memory.

So, the researchers have obtained trustworthy correlations between active memory state and the EEG characteristics. However, there is still a question the researchers cannot yet answer unambiguously. To what extent the phenomena observed – increase of fast frequencies’ power and spatial synchronisation – are really connected with memory mechanisms, and to what extent they simply reflect the brain transition to more active state? The reply is to be provided by future investigations.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Heavy nitrogen molecules reveal planetary-scale tug-of-war

20.11.2017 | Earth Sciences

Taking a spin on plasma space tornadoes with NASA observations

20.11.2017 | Physics and Astronomy

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>