Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green tea ingredient prevents Alzheimer’s-like brain damage in mice

21.09.2005


Researchers at the University of South (USF) have found that green tea may offer another potential health benefit -- protecting the brain against the ravages of Alzheimer’s disease.



In an article published Sept. 21 in the Journal of Neuroscience, USF researchers report that a component of green tea prevented Alzheimer’s-like damage in the brains of mice genetically programmed to develop the neurodegenerative disease process. The component, called epigallocatechin-3-gallate (EGCG), is a major antioxidant in green tea and has been widely studied for its reported protection against certain cancers.

Now the USF team provides the first evidence that EGCG decreases production of the Alzheimer’s-related protein, beta-amyloid, which can accumulate abnormally in the brain and lead to nerve damage and memory loss. This reduction in beta-amyloid was observed both in cell cultures and a mouse model for Alzheimer’s disease. EGCG appears to block the initial process by which the Alzheimer’s-related protein is formed in brain cells.


After treating Alzheimer’s mice for several months with daily injections of pure EGCG, the researchers observed a dramatic decrease -- as much as 54 percent -- of brain-clogging Alzheimer’s plaques.

"The findings suggest that a concentrated component of green tea can decrease brain beta-amyloid plaque formation," said senior study author Jun Tan, PhD, MD, director of the Neuroimmunology Laboratory at the Silver Child Development Center, USF Department of Psychiatry. "If beta-amyloid pathology in this Alzheimer’s mouse model is representative of Alzheimer’s disease pathology in humans, EGCG dietary supplementation may be effective in preventing and treating the disease."

Green tea contains many antioxidants, including those known as flavonoids that can protect against free radical damage to the brain. However, Dr. Tan and colleagues demonstrated that other flavinoids in green tea actually oppose naturally-occurring EGCG’s ability to prevent the harmful build-up of beta-amyloid. Thus, Dr. Tan said, drinking green tea alone would not likely have a beneficial effect through the same mechanism that EGCG works.

"This finding suggests that green tea extract selectively concentrating EGCG would be needed to override the counteractive effect of other flavinoids found in green tea," said study co-author Doug Shytle, PhD. "A new generation of dietary supplements containing pure EGCG may lead to the greatest benefit for treating Alzheimer’s disease." Dr. Tan said humans would likely need 1500 to 1600 mg of EGCG daily to approximate the injection dosage that benefited the Alzheimer’s mice. That dosage has already been studied in healthy human volunteers and was found to be safe and well tolerated.

The USF researchers plan to study whether multiple oral doses of EGCG can improve memory loss in Alzheimer’s mice as well as reducing their Alzheimer’s plaque burden. "If those studies show clear cognitive benefits," Dr. Tan said, "we believe clinical trials of EGCG to treat Alzheimer’s disease would be warranted."

Kavon Rezai-Zedah, a PhD candidate in the USF Department of Medical Microbiology and Immunology was first author of the study. Other authors were Nan Sun, MS; Takashi Mori, PhD, Huayan Hou, MD; Deborah Jeanniton, BS; Jared Ehrhart; PhD candidate; Kirk Townsend, PhD; Jin Zeng, MS; David Morgan, PhD; John Hardy, PhD; and Terrence Town, PhD.

Anne DeLotto Baier | EurekAlert!
Further information:
http://www.hsc.usf.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>