Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green tea ingredient prevents Alzheimer’s-like brain damage in mice

21.09.2005


Researchers at the University of South (USF) have found that green tea may offer another potential health benefit -- protecting the brain against the ravages of Alzheimer’s disease.



In an article published Sept. 21 in the Journal of Neuroscience, USF researchers report that a component of green tea prevented Alzheimer’s-like damage in the brains of mice genetically programmed to develop the neurodegenerative disease process. The component, called epigallocatechin-3-gallate (EGCG), is a major antioxidant in green tea and has been widely studied for its reported protection against certain cancers.

Now the USF team provides the first evidence that EGCG decreases production of the Alzheimer’s-related protein, beta-amyloid, which can accumulate abnormally in the brain and lead to nerve damage and memory loss. This reduction in beta-amyloid was observed both in cell cultures and a mouse model for Alzheimer’s disease. EGCG appears to block the initial process by which the Alzheimer’s-related protein is formed in brain cells.


After treating Alzheimer’s mice for several months with daily injections of pure EGCG, the researchers observed a dramatic decrease -- as much as 54 percent -- of brain-clogging Alzheimer’s plaques.

"The findings suggest that a concentrated component of green tea can decrease brain beta-amyloid plaque formation," said senior study author Jun Tan, PhD, MD, director of the Neuroimmunology Laboratory at the Silver Child Development Center, USF Department of Psychiatry. "If beta-amyloid pathology in this Alzheimer’s mouse model is representative of Alzheimer’s disease pathology in humans, EGCG dietary supplementation may be effective in preventing and treating the disease."

Green tea contains many antioxidants, including those known as flavonoids that can protect against free radical damage to the brain. However, Dr. Tan and colleagues demonstrated that other flavinoids in green tea actually oppose naturally-occurring EGCG’s ability to prevent the harmful build-up of beta-amyloid. Thus, Dr. Tan said, drinking green tea alone would not likely have a beneficial effect through the same mechanism that EGCG works.

"This finding suggests that green tea extract selectively concentrating EGCG would be needed to override the counteractive effect of other flavinoids found in green tea," said study co-author Doug Shytle, PhD. "A new generation of dietary supplements containing pure EGCG may lead to the greatest benefit for treating Alzheimer’s disease." Dr. Tan said humans would likely need 1500 to 1600 mg of EGCG daily to approximate the injection dosage that benefited the Alzheimer’s mice. That dosage has already been studied in healthy human volunteers and was found to be safe and well tolerated.

The USF researchers plan to study whether multiple oral doses of EGCG can improve memory loss in Alzheimer’s mice as well as reducing their Alzheimer’s plaque burden. "If those studies show clear cognitive benefits," Dr. Tan said, "we believe clinical trials of EGCG to treat Alzheimer’s disease would be warranted."

Kavon Rezai-Zedah, a PhD candidate in the USF Department of Medical Microbiology and Immunology was first author of the study. Other authors were Nan Sun, MS; Takashi Mori, PhD, Huayan Hou, MD; Deborah Jeanniton, BS; Jared Ehrhart; PhD candidate; Kirk Townsend, PhD; Jin Zeng, MS; David Morgan, PhD; John Hardy, PhD; and Terrence Town, PhD.

Anne DeLotto Baier | EurekAlert!
Further information:
http://www.hsc.usf.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>