Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UVa Participates in Landmark Breast Cancer Screening Trial


Digital mammography that uses computers to detect breast cancer found significantly (up to 28%) more cancers than screen film mammography in women 50 and younger, premenopausal and perimenopausal women, and women with dense breasts, according to results from one of the largest breast cancer screening studies ever performed.

However, the study showed no difference between digital and standard x-ray mammography in detecting breast cancer for the general population of women. More than 1,300 women took part in the trial at the University of Virginia Health System, one of 33 sites in the U.S. and Canada to study the effectiveness of digital mammogram technology.

“It’s important for every women to get a quality mammogram. But if you’re under 50, premenopausal or know you have dense breast tissue, you should consider having a digital mammogram at your next scheduled screening,” said Dr. Jennifer Harvey, a radiologist and head of breast imaging at the UVa Health System and site investigator for the trial at UVa. “However, women should not delay getting a mammogram if only film screen technology is available. Traditional film screen mammograms save lives as well.”

Digital mammography takes an electronic image of the breast and stores it directly in a computer, allowing the recorded data to be enhanced, magnified, or manipulated for further evaluation. The electronic image also can be printed on film. Film mammography units use film to both capture and display the image. The sensitivity of film mammography is somewhat limited in women with dense breasts, a population at higher risk for breast cancer.

UVa has been performing digital mammography as part of research studies since the mid-1990’s and for clinical use since 2001. The breast program at UVa currently has three GE digital mammogram machines for patients, two in the Breast Care Center in the West Complex and one at Northridge. A fourth digital machine is expected in mid-October to be housed in UVa’s mobile mammography van.

According to the National Cancer Institute, breast cancer is the most common non-skin cancer, and the second leading cause of cancer-related death in women in the United States. An estimated 211,240 women will be diagnosed with breast cancer and an estimated 40,410 women will die of the disease in the U.S. in 2005.

The results of the trial, called DMIST (Digital Mammographic Imaging Screening Trial), are reported in a special online publication of the New England Journal of Medicine. The trial was funded by the NCI and conducted by the American College of Radiology Imaging Network (ACRIN).

Starting in October 2001, DMIST enrolled nearly 50,000 women who had no signs of breast cancer. Women in the trial were given both digital and film mammograms. Mammograms were interpreted independently by two different radiologists. Breast cancer status of the participants was determined through breast biopsy or follow-up mammography.

“I am very proud of the accomplishments of the DMIST researchers,” said Dr. Bruce Hillman, a professor of radiology at the UVa Health System and chair of ACRIN.

“This landmark trial, along with others currently being conducted by ACRIN, will influence the appropriate care for women everywhere.”

Bob Beard | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>