Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UVa Participates in Landmark Breast Cancer Screening Trial

20.09.2005


Digital mammography that uses computers to detect breast cancer found significantly (up to 28%) more cancers than screen film mammography in women 50 and younger, premenopausal and perimenopausal women, and women with dense breasts, according to results from one of the largest breast cancer screening studies ever performed.



However, the study showed no difference between digital and standard x-ray mammography in detecting breast cancer for the general population of women. More than 1,300 women took part in the trial at the University of Virginia Health System, one of 33 sites in the U.S. and Canada to study the effectiveness of digital mammogram technology.

“It’s important for every women to get a quality mammogram. But if you’re under 50, premenopausal or know you have dense breast tissue, you should consider having a digital mammogram at your next scheduled screening,” said Dr. Jennifer Harvey, a radiologist and head of breast imaging at the UVa Health System and site investigator for the trial at UVa. “However, women should not delay getting a mammogram if only film screen technology is available. Traditional film screen mammograms save lives as well.”


Digital mammography takes an electronic image of the breast and stores it directly in a computer, allowing the recorded data to be enhanced, magnified, or manipulated for further evaluation. The electronic image also can be printed on film. Film mammography units use film to both capture and display the image. The sensitivity of film mammography is somewhat limited in women with dense breasts, a population at higher risk for breast cancer.

UVa has been performing digital mammography as part of research studies since the mid-1990’s and for clinical use since 2001. The breast program at UVa currently has three GE digital mammogram machines for patients, two in the Breast Care Center in the West Complex and one at Northridge. A fourth digital machine is expected in mid-October to be housed in UVa’s mobile mammography van.

According to the National Cancer Institute, breast cancer is the most common non-skin cancer, and the second leading cause of cancer-related death in women in the United States. An estimated 211,240 women will be diagnosed with breast cancer and an estimated 40,410 women will die of the disease in the U.S. in 2005.

The results of the trial, called DMIST (Digital Mammographic Imaging Screening Trial), are reported in a special online publication of the New England Journal of Medicine. The trial was funded by the NCI and conducted by the American College of Radiology Imaging Network (ACRIN).

Starting in October 2001, DMIST enrolled nearly 50,000 women who had no signs of breast cancer. Women in the trial were given both digital and film mammograms. Mammograms were interpreted independently by two different radiologists. Breast cancer status of the participants was determined through breast biopsy or follow-up mammography.

“I am very proud of the accomplishments of the DMIST researchers,” said Dr. Bruce Hillman, a professor of radiology at the UVa Health System and chair of ACRIN.

“This landmark trial, along with others currently being conducted by ACRIN, will influence the appropriate care for women everywhere.”

Bob Beard | EurekAlert!
Further information:
http://www.virginia.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>