Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning How SARS Spikes Its Quarry

16.09.2005


Researchers have determined the first detailed molecular images of a piece of the spike-shaped protein that the SARS virus uses to grab host cells and initiate the first stages of infection. The structure, which shows how the spike protein grasps its receptor, may help scientists learn new details about how the virus infects cells. The information could also be helpful in identifying potential weak points that can be exploited by novel antiviral drugs or vaccines.



The SARS (severe acute respiratory syndrome) coronavirus was responsible for a worldwide outbreak in 2002-2003 that affected more than 8,000 people and killed 774 before being brought under control. Public health experts worry about another outbreak of the virus, which originates in animals such as civet cats.

The research team, led by Howard Hughes Medical Institute investigator Stephen C. Harrison at Children’s Hospital and Harvard Medical School, and colleague Michael Farzan, also at Harvard Medical School, reported its findings in the September 16, 2005, issue of the journal Science. Lead author Fang Li in Harrison’s laboratory and Wenhui Li in Farzan’s laboratory, also collaborated on the study.


According to Harrison, prior to these studies, researchers knew that one of the key steps in SARS infection occurs when the virus’s spike protein attaches to a receptor on the surface of target cells. Attachment of the spike protein permits the virus to fuse with a host cell and inject its RNA to infect the cell.

A detailed understanding of how the spike protein complexes with its receptor, ACE2 (angiotensin-converting enzyme 2), could have important clinical implications. “The interest in understanding this complex has to do with the fact that this virus jumps from animals to humans, laterally among humans, and in some cases from animals to humans but without subsequent human-to-human transmission,” said Harrison. “And we know that those modes of transmission depend on specific mutations in the spike protein that affect spike-receptor interaction.

“One of the critical issues in a SARS epidemic would be to predict whether a given variant of the virus will jump species or move laterally from one human to the other. Understanding the structure of this complex will help us understand what these mutations in the spike protein mean in terms of infectivity,” Harrison said.

According to Harrison, Farzan and his colleagues laid the scientific groundwork for determining the structure of the spike-ACE2 complex. In 2003, Farzan’s team discovered that the ACE2 protein is the receptor for the SARS virus. They also identified a specific fragment of the spike protein that is involved in viral attachment.

As a result of those studies, researchers in Harrison’s and Farzan’s laboratories could concentrate their efforts on creating crystals of the relevant fragments of the spike protein in complex with the ACE2 receptor. After they had crystallized the protein complex, the crystals were then subjected to structural analysis using x-ray crystallography. In this widely used technique, x-rays are directed through crystals of a protein. The resulting diffraction pattern is analyzed to deduce the atomic structure of the protein or protein complex under study.

The x-ray structure revealed that the spike protein fragment showed a slightly concave surface that fits a complementary surface on the receptor, said Harrison. There was nothing surprising about the interaction itself, he noted. However, the studies revealed important new information about two specific amino acids on the spike protein. These were the amino acids that Farzan and his colleagues had previously determined to be the most critical for determining how the SARS virus adapted from infecting only civets to infecting humans.

“Both of these critical amino acids turned out to be right in the middle of the interface between the spike protein and the receptor,” said Harrison. Thus, the structure reveals details about how even small mutations in the spike protein gene that alter the identity of amino acids at those sites can affect the virus’s ability to infect humans. Such mutations enable viral transmission by altering the shape of the spike protein, which affects how well it binds to the ACE2 receptor, explained Harrison. In particular, he said, the new structure shows how mutation at one of the two sites can enable the animal SARS virus to infect humans, but by itself this mutation does not appear to allow subsequent human-to-human transmission.

“The observation is that a dramatic epidemiological difference can result from what looks like an almost trivial mutation,” said Harrison. “These findings give us the beginnings of information needed — if a new virus were isolated — to make predictive guesses about infectivity, so that we can better give advance warning.”

He also noted that laboratory studies indicate that the fragment of the spike protein they used could provide the basis of a vaccine against SARS, since it appears to be recognized by the immune system of the host.

In future studies, Harrison and his colleagues plan to explore the steps that occur after the spike protein attaches to the receptor. The researchers know that the spike protein undergoes a conformational change that enables the virus to fuse with the host cell.

“When there’s a conformational change, it gives you an opportunity to explore the possibility of antiviral therapeutics,” said Harrison. “When you have two conformational structures, you can think about how to prevent infection by inhibiting the transition from one state to another.”

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>