Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Shows SARS Can Infect Brain Tissue

15.09.2005


Severe acute respiratory syndrome (SARS), by its very name, indicates a disease of the respiratory tract. But SARS can also infiltrate brain tissue, causing significant central nervous system problems, according to an article in the Oct. 15 issue of Clinical Infectious Diseases, now available online.



SARS, a potentially fatal illness caused by a coronavirus, was first reported in Asia in February of 2003. The disease is usually transmitted by contact with coronavirus-laden droplets sprayed into the air by an infected person’s coughing. Other symptoms can include high fever, headache, body aches, and pneumonia. However, some patients also exhibit central nervous system ailments. In a new study, the researchers report the case of a 39-year-old doctor who treated SARS patients in China during the 2003 outbreak and became infected himself.

He showed the usual symptoms of SARS--fever, chills, headache, muscle pain--but after hospitalization, he developed vision problems, then progressively worse central nervous system symptoms, like restlessness and delirium. A computed tomography scan indicated brain damage. He died about a month after being hospitalized, and his brain tissue was examined and found to contain the SARS coronavirus. The researchers also discovered a high level of Mig, a type of immune system regulator called a chemokine, in the man’s bloodstream and brain, which may have resulted from the central nervous system infection. The researchers speculated that Mig could also have contributed to his brain damage by attracting immunological cells to the site of the viral infection in the brain, where their inflammatory effects may have done more harm than good.


There are a few possibilities for curbing Mig’s possible role in causing brain damage in SARS patients with central nervous system infection, according to lead author Jun Xu, PhD, of the Guangzhou Institute of Respiratory Diseases and senior author Yong Jiang, PhD, of the Key Laboratory of Functional Proteomics of Guangdong Province. “There might be some ways of controlling the release of Mig, such as specific inhibitors that interfere [with] the signaling pathways involved,” Dr. Jiang said. “Other approaches, such as neutralizing antibodies [and] specific binding peptides, could be tried to block brain damage induced by Mig.”

Four to five percent of SARS patients treated at the Guangzhou Institute of Respiratory Diseases experienced central nervous system symptoms, said Dr. Xu; therefore, physicians need to be aware of the potential for brain infection when evaluating patients with the disease. Immunosuppressive drugs should be administered carefully and on an individual basis, as they may allow amplification of the SARS coronavirus in the brain. “Superinfection” with other pathogens could also contribute to SARS’ harmful effects on the brain. “Physicians should pay more attention to the prevention of brain damage if [SARS patients] are superinfected with other conditional pathogens,” according to Dr. Xu and Dr. Jiang.

Steve Baragona | EurekAlert!
Further information:
http://www.idsociety.org

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>