Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Shows SARS Can Infect Brain Tissue

15.09.2005


Severe acute respiratory syndrome (SARS), by its very name, indicates a disease of the respiratory tract. But SARS can also infiltrate brain tissue, causing significant central nervous system problems, according to an article in the Oct. 15 issue of Clinical Infectious Diseases, now available online.



SARS, a potentially fatal illness caused by a coronavirus, was first reported in Asia in February of 2003. The disease is usually transmitted by contact with coronavirus-laden droplets sprayed into the air by an infected person’s coughing. Other symptoms can include high fever, headache, body aches, and pneumonia. However, some patients also exhibit central nervous system ailments. In a new study, the researchers report the case of a 39-year-old doctor who treated SARS patients in China during the 2003 outbreak and became infected himself.

He showed the usual symptoms of SARS--fever, chills, headache, muscle pain--but after hospitalization, he developed vision problems, then progressively worse central nervous system symptoms, like restlessness and delirium. A computed tomography scan indicated brain damage. He died about a month after being hospitalized, and his brain tissue was examined and found to contain the SARS coronavirus. The researchers also discovered a high level of Mig, a type of immune system regulator called a chemokine, in the man’s bloodstream and brain, which may have resulted from the central nervous system infection. The researchers speculated that Mig could also have contributed to his brain damage by attracting immunological cells to the site of the viral infection in the brain, where their inflammatory effects may have done more harm than good.


There are a few possibilities for curbing Mig’s possible role in causing brain damage in SARS patients with central nervous system infection, according to lead author Jun Xu, PhD, of the Guangzhou Institute of Respiratory Diseases and senior author Yong Jiang, PhD, of the Key Laboratory of Functional Proteomics of Guangdong Province. “There might be some ways of controlling the release of Mig, such as specific inhibitors that interfere [with] the signaling pathways involved,” Dr. Jiang said. “Other approaches, such as neutralizing antibodies [and] specific binding peptides, could be tried to block brain damage induced by Mig.”

Four to five percent of SARS patients treated at the Guangzhou Institute of Respiratory Diseases experienced central nervous system symptoms, said Dr. Xu; therefore, physicians need to be aware of the potential for brain infection when evaluating patients with the disease. Immunosuppressive drugs should be administered carefully and on an individual basis, as they may allow amplification of the SARS coronavirus in the brain. “Superinfection” with other pathogens could also contribute to SARS’ harmful effects on the brain. “Physicians should pay more attention to the prevention of brain damage if [SARS patients] are superinfected with other conditional pathogens,” according to Dr. Xu and Dr. Jiang.

Steve Baragona | EurekAlert!
Further information:
http://www.idsociety.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>