Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Shows SARS Can Infect Brain Tissue

15.09.2005


Severe acute respiratory syndrome (SARS), by its very name, indicates a disease of the respiratory tract. But SARS can also infiltrate brain tissue, causing significant central nervous system problems, according to an article in the Oct. 15 issue of Clinical Infectious Diseases, now available online.



SARS, a potentially fatal illness caused by a coronavirus, was first reported in Asia in February of 2003. The disease is usually transmitted by contact with coronavirus-laden droplets sprayed into the air by an infected person’s coughing. Other symptoms can include high fever, headache, body aches, and pneumonia. However, some patients also exhibit central nervous system ailments. In a new study, the researchers report the case of a 39-year-old doctor who treated SARS patients in China during the 2003 outbreak and became infected himself.

He showed the usual symptoms of SARS--fever, chills, headache, muscle pain--but after hospitalization, he developed vision problems, then progressively worse central nervous system symptoms, like restlessness and delirium. A computed tomography scan indicated brain damage. He died about a month after being hospitalized, and his brain tissue was examined and found to contain the SARS coronavirus. The researchers also discovered a high level of Mig, a type of immune system regulator called a chemokine, in the man’s bloodstream and brain, which may have resulted from the central nervous system infection. The researchers speculated that Mig could also have contributed to his brain damage by attracting immunological cells to the site of the viral infection in the brain, where their inflammatory effects may have done more harm than good.


There are a few possibilities for curbing Mig’s possible role in causing brain damage in SARS patients with central nervous system infection, according to lead author Jun Xu, PhD, of the Guangzhou Institute of Respiratory Diseases and senior author Yong Jiang, PhD, of the Key Laboratory of Functional Proteomics of Guangdong Province. “There might be some ways of controlling the release of Mig, such as specific inhibitors that interfere [with] the signaling pathways involved,” Dr. Jiang said. “Other approaches, such as neutralizing antibodies [and] specific binding peptides, could be tried to block brain damage induced by Mig.”

Four to five percent of SARS patients treated at the Guangzhou Institute of Respiratory Diseases experienced central nervous system symptoms, said Dr. Xu; therefore, physicians need to be aware of the potential for brain infection when evaluating patients with the disease. Immunosuppressive drugs should be administered carefully and on an individual basis, as they may allow amplification of the SARS coronavirus in the brain. “Superinfection” with other pathogens could also contribute to SARS’ harmful effects on the brain. “Physicians should pay more attention to the prevention of brain damage if [SARS patients] are superinfected with other conditional pathogens,” according to Dr. Xu and Dr. Jiang.

Steve Baragona | EurekAlert!
Further information:
http://www.idsociety.org

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>