Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disrupting cocaine-memories to battle addiction

15.09.2005


Addicts crave drugs and suffer relapse not just because of the alluring high of drugs, but also because they are compelled by the powerful, haunting memory associations with the environment surrounding their drug taking. Thus, treatments that could eliminate those memory associations could prove effective in treating addiction, researchers believe.



In two papers in the September 15, 2005, issue of Neuron, two groups of researchers report important progress toward such treatments, showing that they can selectively knock out memory associations connected with receiving cocaine.

In one paper, Jonathan Lee and his colleagues at the University of Cambridge create an animal model of such cocaine memory formation by first teaching rats to associate the poking of their noses into a food bin with an infusion of cocaine into the brain and with the activation of a signal light. They infused cocaine into the amygdala, a brain region involved in forming and processing emotional memories.


The researchers then extinguished the drug-related memory by giving the animals only saline solution when they poked their nose into the bin, activating the light.

In their procedure, the researchers then added a new drug-associated response by requiring the animals to press a lever to obtain cocaine, with the lever also activating the same signal light.

Their purpose was to test the effects of treatment on a memory process called "reconsolidation." The theory underlying reconsolidation is that when memories are recalled they become malleable, subject to disruption.

To discover whether they could disrupt reconsolidation of the drug-related memory, before the animals were exposed to the new lever-pressing task, the researchers injected into the amygdalas of the trained animals a molecule that would effectively shut down the gene that produces a protein called Zif268. This protein is known to be active when cocaine-conditioned memories are created. The injected molecule was "anti-sense" DNA that would attach to the gene, blocking its activation.

The researchers found that such anti-sense DNA treatment disrupted the rats’ ability to learn to associate the new lever-pressing behavior with the signal light to obtain cocaine, despite the fact that the animals showed no other differences from a control group in lever-pressing activity or nosepoke response and thus no difference in general motivation or activity.

The researcher wrote that "Drug-associated stimuli are critically important in the acquisition of prolonged periods of drug-seeking behavior, maintenance of this behavior in the absence of reward, and precipitation of relapse to drug seeking in the absence of reward. Therefore, the ability to disrupt retroactively the conditioned reinforcing properties of a drug cue provides a potentially powerful and novel approach to the treatment of drug addiction by diminishing the behavioral impact of drug cues and thereby relapse."

Lee and his colleagues point out that the basic processes of such drug-associated memory reconsolidation are distinct enough from normal memory that "it is possible to manipulate preexisting maladaptive memories in a highly specific manner, without affecting either the reconsolidation of other established memories or the consolidation of new memories."

In a second Neuron paper, Courtney Miller and John Marshall of the University of California, Irvine, explored how another brain region, the nucleus accumbens, operated in cocaine-associated memories. The nucleus accumbens receives neural input from the amygdala and is involved in motivating such reward-related behavior as drug seeking.

In their experiments, the researchers taught rats to associate one of two connected chambers with receiving cocaine and measured how well the rats remembered that association and chose to move to that chamber.

The researchers’ analysis of molecular regulatory pathways in the animals’ nucleus accumbens revealed that a master neural regulatory pathway, triggered by a molecular switch called ERK, was activated when the trained animals showed a preference for the "cocaine chamber."

What’s more, the researchers discovered that drugs that blocked the ERK pathway prevented the trained animals’ memory retrieval of their preference for that chamber.

And to their surprise the researchers found that the drugs also blocked memory reconsolidation--significantly reducing the rats’ preference for the cocaine chamber even two weeks after being given.

"To our knowledge, the current study is the first to identify a molecular mechanism that blocks both retrieval and reconsolidation of any type of memory," wrote Miller and Marshall.

"While much remains to be understood concerning the cellular processes underlying the effects of ERK in drug-stimulus associations and other types of learning and memory, the present findings offer hope for treating cue-elicited relapse in addicts," concluded Miller and Marshall.

"It is widely accepted that memories for drug-associates stimuli, which are strong and resistant to extinction, are responsible for much of the relapse seen in addicts. The present findings suggest that these highly resistant memories may again be made labile and thus susceptible to disruption by pharmacological or other neurobiological interventions, providing opportunities for new therapies," they concluded.

Heidi Hardman | EurekAlert!
Further information:
http://www.neuron.org.
http://www.cell.com

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>