Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disrupting cocaine-memories to battle addiction

15.09.2005


Addicts crave drugs and suffer relapse not just because of the alluring high of drugs, but also because they are compelled by the powerful, haunting memory associations with the environment surrounding their drug taking. Thus, treatments that could eliminate those memory associations could prove effective in treating addiction, researchers believe.



In two papers in the September 15, 2005, issue of Neuron, two groups of researchers report important progress toward such treatments, showing that they can selectively knock out memory associations connected with receiving cocaine.

In one paper, Jonathan Lee and his colleagues at the University of Cambridge create an animal model of such cocaine memory formation by first teaching rats to associate the poking of their noses into a food bin with an infusion of cocaine into the brain and with the activation of a signal light. They infused cocaine into the amygdala, a brain region involved in forming and processing emotional memories.


The researchers then extinguished the drug-related memory by giving the animals only saline solution when they poked their nose into the bin, activating the light.

In their procedure, the researchers then added a new drug-associated response by requiring the animals to press a lever to obtain cocaine, with the lever also activating the same signal light.

Their purpose was to test the effects of treatment on a memory process called "reconsolidation." The theory underlying reconsolidation is that when memories are recalled they become malleable, subject to disruption.

To discover whether they could disrupt reconsolidation of the drug-related memory, before the animals were exposed to the new lever-pressing task, the researchers injected into the amygdalas of the trained animals a molecule that would effectively shut down the gene that produces a protein called Zif268. This protein is known to be active when cocaine-conditioned memories are created. The injected molecule was "anti-sense" DNA that would attach to the gene, blocking its activation.

The researchers found that such anti-sense DNA treatment disrupted the rats’ ability to learn to associate the new lever-pressing behavior with the signal light to obtain cocaine, despite the fact that the animals showed no other differences from a control group in lever-pressing activity or nosepoke response and thus no difference in general motivation or activity.

The researcher wrote that "Drug-associated stimuli are critically important in the acquisition of prolonged periods of drug-seeking behavior, maintenance of this behavior in the absence of reward, and precipitation of relapse to drug seeking in the absence of reward. Therefore, the ability to disrupt retroactively the conditioned reinforcing properties of a drug cue provides a potentially powerful and novel approach to the treatment of drug addiction by diminishing the behavioral impact of drug cues and thereby relapse."

Lee and his colleagues point out that the basic processes of such drug-associated memory reconsolidation are distinct enough from normal memory that "it is possible to manipulate preexisting maladaptive memories in a highly specific manner, without affecting either the reconsolidation of other established memories or the consolidation of new memories."

In a second Neuron paper, Courtney Miller and John Marshall of the University of California, Irvine, explored how another brain region, the nucleus accumbens, operated in cocaine-associated memories. The nucleus accumbens receives neural input from the amygdala and is involved in motivating such reward-related behavior as drug seeking.

In their experiments, the researchers taught rats to associate one of two connected chambers with receiving cocaine and measured how well the rats remembered that association and chose to move to that chamber.

The researchers’ analysis of molecular regulatory pathways in the animals’ nucleus accumbens revealed that a master neural regulatory pathway, triggered by a molecular switch called ERK, was activated when the trained animals showed a preference for the "cocaine chamber."

What’s more, the researchers discovered that drugs that blocked the ERK pathway prevented the trained animals’ memory retrieval of their preference for that chamber.

And to their surprise the researchers found that the drugs also blocked memory reconsolidation--significantly reducing the rats’ preference for the cocaine chamber even two weeks after being given.

"To our knowledge, the current study is the first to identify a molecular mechanism that blocks both retrieval and reconsolidation of any type of memory," wrote Miller and Marshall.

"While much remains to be understood concerning the cellular processes underlying the effects of ERK in drug-stimulus associations and other types of learning and memory, the present findings offer hope for treating cue-elicited relapse in addicts," concluded Miller and Marshall.

"It is widely accepted that memories for drug-associates stimuli, which are strong and resistant to extinction, are responsible for much of the relapse seen in addicts. The present findings suggest that these highly resistant memories may again be made labile and thus susceptible to disruption by pharmacological or other neurobiological interventions, providing opportunities for new therapies," they concluded.

Heidi Hardman | EurekAlert!
Further information:
http://www.neuron.org.
http://www.cell.com

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>