Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space Cycle tests artificial gravity as solution to muscle loss

14.09.2005


A bike-like centrifuge that creates artificial gravity may help astronauts combat muscle atrophy in space. Through a study at the University of California, Irvine, the National Space Biomedical Research Institute (NSBRI) is exploring the concept of a Space Cycle for inflight resistance-training exercise.



“Even with onboard exercise, astronauts face the risk of losing muscle mass and function because their muscles are not bearing enough weight, or load,” said Dr. Vincent J. Caiozzo, investigator on NSBRI’s Muscle Alterations and Atrophy Team. “For exploration, it is important to find ways to increase load-bearing activity so astronauts can maintain strength.”

Caiozzo’s team is researching whether squats executed under artificial gravity conditions greater than or equal to Earth gravity (1g) produce the same kind of muscle responses that occur when a person performs weight training on Earth.


With long-term initiatives like the International Space Station and the proposed lunar and Mars missions, the rate of muscle loss in some areas might rise to 25 percent unless measures are taken to confront atrophy. The loss of muscle strength during an extended mission could pose dramatic problems in the event of an emergency situation upon landing.

The Space Cycle, a human-powered centrifuge under testing in Caiozzo’s lab, generates various levels of artificial gravity ranging from Earth gravity to five times Earth’s gravity. The speed of rotation determines the level of gravitational force.

Participants ride opposite one another – one on a bike and one on a platform. As one person pedals, the cycle moves in a circular motion around a centralized pole. The motion generates pressure on the rider, forcing him against the seat in a manner similar to the effect of gravity on Earth. On the platform, the other person performs squat exercises. Instruments on the device report the separate work rates of the participants.

Caiozzo’s team is determining the Space Cycle’s effectiveness by comparing the participants’ pre- and post-study muscle mass and strength, muscle fiber cross-sections from biopsies, and various cellular and molecular markers of growth.

“The novelty of artificial gravity resistance training is that each element of the body is loaded proportionally. Leg muscles can be made to work against high loads without the need for external weights, which is important in light of the limited mass and space available on missions,” said Caiozzo, professor in the Departments of Orthopaedic Surgery, Physiology and Biophysics at UC Irvine.

In collaboration with Caiozzo, UC Irvine researchers Dr. Joyce Keyak and Dr. Jim Hicks are gathering data from the participants to determine whether the Space Cycle is also effective in maintaining bone mass and cardiovascular fitness.

“Space Cycle is an artificial gravity exercise gym,” Caiozzo said. “The platform can be fitted with a treadmill, bike or any kind of exercise equipment and provides an environment for exercise under normal, Earth-like loading conditions.”

NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration space flight. The Institute’s research and education projects take place at more than 70 institutions across the United States.

Lauren Hammit | EurekAlert!
Further information:
http://www.nsbri.org
http://www.bcm.tmc.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>