Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genotype Of Hypertensive Patient Determines Treatment Success


Success of hypertension treatment depends on how well the chosen treatment mode matches the patient’s genotype. Specialists of the Chair of Balneology and Physical Therapy (Kirov Army Medical College) have determined how the hypertensive patient’s genotype impacts the efficiency of magnetic-laser therapy.

Primary hypertension is one of the most frequent diseases, the treatment of which is still a problem to contemporary medicine. The disease is determined by some genes, each of the genes may exist in several variants. Respective combination of these genes forms the so-called “risk threshold” of disease origin. The major contribution to the hypertension evolution is made by the genes of angiotensinogen (AGT), angiotensin converting enzyme (ACE) and some others. Their combination determines not only the risk of disease occurrence, but also a potential success of its treatment. Thus, adrenolytic drugs act differently on central hemodynamics depending on the AGT and ACE genes’ polymorphism. Besides drug therapy, there exist physical treatment modes, specifically - magnetic-laser therapy. The St. Petersburg physicians have researched how its effectiveness depends on genotype.

Magnetic-laser therapy effectiveness was evaluated with 101 patients with different variants of genes’ polymorphism. The polymorphism itself was determined with the help of the polymerase chain reaction, having taken some venous blood from the patients. Participants to the experiment underwent a radiation treatment course consisting of ten everyday sessions, the patients being examined before and after the course. Physicians watched the blood pressure changes within 24 hours and the reaction to physical activity (the patients were placed on the bicycle ergometer). Polymorphism of different genes determines the clinical behavior and treatment effectiveness to different extent. Magnetic-laser therapy helps the majority of hypertensive patients. The ACE gene has the highest influence on the magnetic-laser therapy results. In case of one variant of polymorphism (it is called MM- polymorphism) the blood pressure falls down to the greatest degree. The researchers have also found the combinations where the effect is the lowest (this is TT-polymorphism of the angiotensinogen gene). It is interesting to note that the variant of angiotensin converting enzyme (ACE) polymorphism is the worst for success of magnetic-laser therapy but it is optimal for drug treatment of high blood-pressure.

There are several genes that determine effectiveness of hypertension treatment. To clearly perceive their joint impact it is necessary to continue the research. However, it is evident already which genes determine to the largest extent the blood pressure and the value the blood pressure can be lowered in this or that way. Probably the patients will be soon undergo genetic blood test first, and then, depending on its results, the treatment will be prescribed.

Sergey Komarov | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>