Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF scientist finds unexpected link between cat and human AIDS viruses

09.09.2005


Emerging relationships between the two viruses could one day lead to a vaccine for human AIDS

A University of Florida researcher has discovered an unexpected link between the viruses that cause feline and human AIDS: Cats vaccinated with an experimental strain of the human AIDS virus appear to be at least as well-protected against the feline version of the disease as those immunized with the vaccine currently used by veterinarians.

The surprise finding may mean cats with feline immunodeficiency virus, also known as FIV or feline AIDS, could eventually be treated even more effectively using some form of the experimental human vaccine.



Researcher Janet Yamamoto, a professor at UF’s College of Veterinary Medicine, also theorizes that these emerging relationships between the two viruses could one day lead to a vaccine for human AIDS.

Results from Yamamoto’s research can be previewed in today’s (Sept. 8) online issue of the journal AIDS.

FIV is a natural infection of domestic cats that results in an immunodeficiency syndrome resembling HIV infection in humans. Since its discovery in 1987, FIV infection of cats has been used in vaccine studies as a small-animal model of human AIDS.

"We were the first to demonstrate that you can make an effective vaccine against a virus in the AIDS family of viruses," said Yamamoto, a co-discoverer of FIV.

Yamamoto holds the patent on the only approved vaccine available through veterinarians to protect cats against FIV. Her most recent studies have attempted to improve the efficacy of that vaccine by using strains of FIV found in cats in which the disease had not progressed for some reason over several years.

To determine the extent to which the human and feline AIDS viruses react to each other, and any implications that might exist for vaccine efficacy, Yamamoto began experimenting with long-term, nonprogressive strains of FIV that led to the current commercial vaccine. Now she is working on an HIV vaccine consisting of HIV virus from long-term, nonprogressing individuals.

"We purposely made vaccines with strains that weren’t virile," Yamamoto said. "We found that whenever we tried using less virulent strains of virus, we were able to make a better vaccine."

Yamamoto’s team was also surprised to discover that a core protein found in HIV also effectively protects cats against FIV.

"So what does this mean to human AIDS research? The viruses HIV and FIV are from the same viral family," Yamamoto said. "For that reason, the amino acids that make up the proteins in both viruses share some common regions. There appear to be regions of HIV, or variations of the core protein we used in our studies, that may provide protection in vaccine form against HIV."

Some compounds made from separate virus strains have been successfully used in vaccines against viruses from the same subfamily, such as smallpox in humans, which is made from cowpox virus, and human measles vaccines for canine distemper in puppies.

"Therefore, protective vaccines based on cross-reactive regions of AIDS viruses can provide broad immunity, and may be useful against viruses that are currently evolving in a new host, such as HIV infection of humans," Yamamoto said.

Alan L. Landay, a professor of immunology and microbiology and associate department chairman at Rush University Medical Center in Chicago called Yamamoto’s findings "very exciting."

"This raises a potential whole new area for research in the field of vaccines that with the current approaches haven’t yielded any success to date," said Landay, whose research team is working to develop novel immune strategies to treat HIV infection. "We need to explore all the potential options available to us for developing an HIV vaccine."

Sarah Carey | EurekAlert!
Further information:
http://www.vetmed.ufl.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>