Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Millions of SEK in funding for malaria research at Umeå University

06.09.2005


The molecular biologist Cathrine Persson at Umeå University has been allotted SEK 2.5 million from the U.S. National Institutes of Health (NIH) for research on a vaccine against malaria.

The project “Immunogenicity of synthetic peptide malaria vaccines” spans five years and is designed to study the protection offered by various synthetic vaccines against malaria. Cathrine Persson is collaborating with Professor Elizabeth Nardin, NYU School of Medicine in New York.

The funding is being provided by the National Institute of Allergy and Infectious Diseases (NIAID), one of the 27 institutes and centers that make up the NIH, a federal body that both pursues and provides support for various types of medical research in the U.S. and abroad. The competition for this funding is extremely stiff, and it is not often that scientists in Sweden are selected for grants. The application submitted by Cathrine and her associate was given high scores in the assessment process. Malaria is a major world health problem, and there is no vaccine at present.



“It’s our hope that we will be able to come up with an effective vaccine. This would be a tremendous breakthrough in efforts to develop protection against malaria,” says Cathrine Persson.

Malaria claims several millions of human lives every year and is caused by a group of single-cell parasites (so-called protzoas) that are transmitted to humans by mosquitoes. People who live in malaria-infested areas develop antibodies against the Circumsporozoite protein (CS), a protein on the surface of the malaria parasite. Owing to the ability of CS to stimulate our immune defense, it is included in several trial vaccines that have been tested on humans. A major problem with all vaccine trials is that there is no good way to measure to what extent an individual has developed protection against malaria after being vaccinated. By constructing hybrid parasites that contain parts of the CS protein, Cathrine Persson’s research aims to show what parts of CS are best at stimulating our immune defense. The hybrid parasites will moreover be used as a tool to analyze the outcome of vaccination trials.

Hans Fällman | alfa
Further information:
http://www.molbiol.umu.se/forskning/CathrinePersson
http://www.umu.se

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>