Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Liverpool Leads New European Tissue Engineering Project


Scientists at the University of Liverpool are leading a major European clinical engineering project that should see human tissue grown from stem cells available for transplant in the next four years.

Scientists will develop the technology to target heart failure, diabetes, chronic ulcers and neurodegenerative diseases in particular.

The £17million project, funded by the European Commission and led by the University of Liverpool and Italian pharmaceutical company Fidia, will accelerate the development of tissue engineering, bringing together the expertise of 23 academic and industrial partners across Europe.

Professor David Williams, Director of the UK Centre For Tissue Engineering at the University of Liverpool, said: “For tissue engineering to be successful clinically, it has to be able to generate exactly the right type of tissue, specific to a patient, in a cost-effective manner.

“This is not really being achieved anywhere in the world yet, but this major new project will bring together a team, with critical mass, and a range of expertise from stem cell biology to bio-manufacturing processes, including ethics and business models.”

Tissue Engineering is an emerging technology that will provide therapies for wide-ranging diseases and chronic injuries. It involves taking human cells - such as stem cells - from blood or bone marrow and encouraging those cells to produce new tissue through the use of growth factors.

Researchers in Liverpool have been developing methods of growing a variety of tissue, including human arteries, from adult stem cells. Blood vessels grown in the laboratory could be used to replace furred up arteries in patients suffering from coronary heart disease.

The new project - ‘A Systems Approach to Tissue Engineering Products and Processes’ (STEPS), is one of the largest research contracts in Europe and a major part of the EU’s Framework Six programme.

Kate Spark | alfa
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>