Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toasty oat aroma influenced by presence of health-linked polyphenols

01.09.2005


Penn State food scientists have shown that the amount of health-linked polyphenols present during roasting or baking influences the toasty aroma developed by oats and might be used to limit the generation of off-flavors in oat products.



Polyphenols are a large family of naturally occurring plant components that have been associated with a wide variety of health benefits. Flavonoids and some anti-oxidants belong to the polyphenol family and have been shown to have heart-healthy and anti-cancer effects, for example.

The polyphenols the Penn State team studied were hydroxycinnamic acids, which have been associated with reduced risk of chronic diseases or for optimal health.


Dr. Devin Peterson, assistant professor of food science and director of the study, says, "Our research has shown that polyphenols are key to aroma and flavor formation in oats during the Maillard reaction which is the browning process that occurs when foods are roasted or baked. Polyphenols have not been identified as major flavor producers before or associated with the Maillard reaction." Peterson presented his results today at the national meeting of the American Chemical Society in Washington, D. C. His paper is, "Effects of Phenolic Content on the Generation of Maillard-type Aroma Compounds in Toasted Oat Groats". His co-authors are Stacy L. Schwambach, master’s student, and Vandana A. Totlani, doctoral student.

In their experiments, Peterson and his research group took a batch of rolled oats and divided it into two samples. They boosted the level of polyphenols in one of the samples by an amount that can be found in nature and then roasted both samples. The sample that had the added polyphenols developed a lower level of Maillard-type aroma compounds as measured by gas chromatography and a panel of trained human sniffers.

The Penn State group’s analyses show that the polyphenols inhibit the Maillard reaction by tying up or quenching some of the sugars and other transient reaction products the process needs to proceed.

Peterson explains that the Maillard reaction not only produces desirable changes, such as a golden brown color and toasty aroma, but also can sometimes cause off-flavors or stale odors. The reaction not only proceeds during roasting or baking but also during storing. The new Penn State results suggest that controlling the levels of polyphenols, which are found naturally in all food plants, might prevent undesirable results of the Maillard reaction.

In addition, the Penn State scientist points out that the Maillard reaction also occurs in the human body as part of the aging process, in tanning, hardening of the arteries, and diabetes as well as other diseases.

"The polyphenols’ ability to quench sugars and inhibit the Maillard reaction may have positive implications for health besides improving the quality of food products," he says.

The study was supported by a grant from the U.S. Department of Agriculture Cooperative State Research, Education and Extension Service (CSREES).

Polyphenols are a large family of naturally occurring plant components that have been associated with a wide variety of health benefits. Flavonoids and some anti-oxidants belong to the polyphenol family and have been shown to have heart-healthy and anti-cancer effects, for example.

The polyphenols the Penn State team studied were hydroxycinnamic acids, which have been associated with reduced risk of chronic diseases or for optimal health.

Dr. Devin Peterson, assistant professor of food science and director of the study, says, "Our research has shown that polyphenols are key to aroma and flavor formation in oats during the Maillard reaction which is the browning process that occurs when foods are roasted or baked. Polyphenols have not been identified as major flavor producers before or associated with the Maillard reaction."

Peterson presented his results today at the national meeting of the American Chemical Society in Washington, D. C. His paper is, "Effects of Phenolic Content on the Generation of Maillard-type Aroma Compounds in Toasted Oat Groats". His co-authors are Stacy L. Schwambach, master’s student, and Vandana A. Totlani, doctoral student.

In their experiments, Peterson and his research group took a batch of rolled oats and divided it into two samples. They boosted the level of polyphenols in one of the samples by an amount that can be found in nature and then roasted both samples. The sample that had the added polyphenols developed a lower level of Maillard-type aroma compounds as measured by gas chromatography and a panel of trained human sniffers.

The Penn State group’s analyses show that the polyphenols inhibit the Maillard reaction by tying up or quenching some of the sugars and other transient reaction products the process needs to proceed.

Peterson explains that the Maillard reaction not only produces desirable changes, such as a golden brown color and toasty aroma, but also can sometimes cause off-flavors or stale odors. The reaction not only proceeds during roasting or baking but also during storing. The new Penn State results suggest that controlling the levels of polyphenols, which are found naturally in all food plants, might prevent undesirable results of the Maillard reaction.

In addition, the Penn State scientist points out that the Maillard reaction also occurs in the human body as part of the aging process, in tanning, hardening of the arteries, and diabetes as well as other diseases.

"The polyphenols’ ability to quench sugars and inhibit the Maillard reaction may have positive implications for health besides improving the quality of food products," he says.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>