Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Modified collagen could yield important medical applications


Altered protein could help deliver drugs and shape the growth of engineered tissue

Collagen often pops up in beauty products and supermodel lips. But by mating collagen with a molecular hitchhiker, materials scientists at Johns Hopkins hope to create some important medical advances. The researchers have found a simple new way to modify collagen, paving the way for better infection-fighting bandages and a treatment to block the formation of unwanted scar tissue. In addition, tissue engineers may be able to use modified collagen in the lab to help control the formation of tiny new blood vessels that can be used to promote the integration of tissue implants in patients.

Michael (Seungju) Yu of the university’s Whiting School of Engineering was scheduled to describe the new collagen modification process and its potential medical uses in an Aug. 30 presentation in Washington, D.C., at the 230th annual meeting of the American Chemical Society. His team also published a paper on the work earlier this year in the Journal of the American Chemical Society.

The research focuses on the human body’s most common protein. Collagen promotes blood clotting and provides the sponge-like scaffold upon which cells build nerves, bones and skin. Because it is non-toxic, dissolves naturally over time and rarely triggers rejection, collagen is commonly used in cosmetics, drug delivery systems and biocompatible coatings.

Yu’s goal is to change some of collagen’s biochemical or mechanical properties to give it new medical applications. Traditionally, scientists have altered collagen by using intense heat or chemical reactions, techniques that may damage the protein or limit its safe use in humans. Yu’s method, however, requires only physical mixing of collagen with even smaller molecules called collagen mimetic peptides.

"That’s the beauty of this," said Yu, an assistant professor in the Department of Materials Science and Engineering. "If you want to attach these molecules to collagen, you don’t have to cook it or use harsh chemicals. You just mix them together in a solution."

In lab experiments, Yu and his colleagues have shown that this kind of molecular marriage does take place. They attached fluorescent tags to the peptides and observed the glow in collagen that had been mixed with the smaller molecules. Exactly how and why the collagen and the peptides join is uncertain. But researchers know that collagen molecules form a distinctive triple-helix in which three long protein strands intertwine like rope. Yu speculates that because the smaller collagen mimetic peptides have a propensity to make similar triple-helix structures, they are naturally attracted to collagen molecules. He believes the peptides make themselves at home within gaps formed by loose collagen strands.

This linkup opens the door to new medical treatments, Yu says, because it is easy to attach bioactive agents to the peptides. When the peptides bind with collagen, these attached agents can dramatically change the way collagen behaves in the body. For example, collagen normally attracts cells to close up a wound and form scar tissue. But this property is not always desirable; a clot can be dangerous inside a blood vessel or at certain injury sites, where scar tissue can interfere with the formation of new nerve connections.

Modified collagen can follow a different course. In their recent journal paper, Yu and his colleagues reported that they had attached a chemical, polyethylene glycol, to the peptides, causing collagen to repel cells instead of attracting them. When the researchers added human cells to a lab dish, the cells migrated toward an untreated collagen film but avoided the modified collagen sample. This form of collagen could stop the formation of blood clots and scar tissue, and scientists may be able to use it to control the shape and organization of cells and tissue that are grown in a lab, Yu says.

Still other medical uses are possible. A growth factor joined to collagen could encourage new cells to multiply. An antibiotic attached to collagen could help a collagen-based bandage fight infections over a long period of time. Modified collagen could also release helpful medications while serving as a coating for surgical tools and implants.

"With this process," Yu said, "we can make the collagen that’s already found in the human body behave in new ways, including some ways that are not found in nature. Modified collagen can give us great new tool for treating injuries and illnesses."

Phil Sneiderman | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>