Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modified collagen could yield important medical applications

31.08.2005


Altered protein could help deliver drugs and shape the growth of engineered tissue



Collagen often pops up in beauty products and supermodel lips. But by mating collagen with a molecular hitchhiker, materials scientists at Johns Hopkins hope to create some important medical advances. The researchers have found a simple new way to modify collagen, paving the way for better infection-fighting bandages and a treatment to block the formation of unwanted scar tissue. In addition, tissue engineers may be able to use modified collagen in the lab to help control the formation of tiny new blood vessels that can be used to promote the integration of tissue implants in patients.

Michael (Seungju) Yu of the university’s Whiting School of Engineering was scheduled to describe the new collagen modification process and its potential medical uses in an Aug. 30 presentation in Washington, D.C., at the 230th annual meeting of the American Chemical Society. His team also published a paper on the work earlier this year in the Journal of the American Chemical Society.


The research focuses on the human body’s most common protein. Collagen promotes blood clotting and provides the sponge-like scaffold upon which cells build nerves, bones and skin. Because it is non-toxic, dissolves naturally over time and rarely triggers rejection, collagen is commonly used in cosmetics, drug delivery systems and biocompatible coatings.

Yu’s goal is to change some of collagen’s biochemical or mechanical properties to give it new medical applications. Traditionally, scientists have altered collagen by using intense heat or chemical reactions, techniques that may damage the protein or limit its safe use in humans. Yu’s method, however, requires only physical mixing of collagen with even smaller molecules called collagen mimetic peptides.

"That’s the beauty of this," said Yu, an assistant professor in the Department of Materials Science and Engineering. "If you want to attach these molecules to collagen, you don’t have to cook it or use harsh chemicals. You just mix them together in a solution."

In lab experiments, Yu and his colleagues have shown that this kind of molecular marriage does take place. They attached fluorescent tags to the peptides and observed the glow in collagen that had been mixed with the smaller molecules. Exactly how and why the collagen and the peptides join is uncertain. But researchers know that collagen molecules form a distinctive triple-helix in which three long protein strands intertwine like rope. Yu speculates that because the smaller collagen mimetic peptides have a propensity to make similar triple-helix structures, they are naturally attracted to collagen molecules. He believes the peptides make themselves at home within gaps formed by loose collagen strands.

This linkup opens the door to new medical treatments, Yu says, because it is easy to attach bioactive agents to the peptides. When the peptides bind with collagen, these attached agents can dramatically change the way collagen behaves in the body. For example, collagen normally attracts cells to close up a wound and form scar tissue. But this property is not always desirable; a clot can be dangerous inside a blood vessel or at certain injury sites, where scar tissue can interfere with the formation of new nerve connections.

Modified collagen can follow a different course. In their recent journal paper, Yu and his colleagues reported that they had attached a chemical, polyethylene glycol, to the peptides, causing collagen to repel cells instead of attracting them. When the researchers added human cells to a lab dish, the cells migrated toward an untreated collagen film but avoided the modified collagen sample. This form of collagen could stop the formation of blood clots and scar tissue, and scientists may be able to use it to control the shape and organization of cells and tissue that are grown in a lab, Yu says.

Still other medical uses are possible. A growth factor joined to collagen could encourage new cells to multiply. An antibiotic attached to collagen could help a collagen-based bandage fight infections over a long period of time. Modified collagen could also release helpful medications while serving as a coating for surgical tools and implants.

"With this process," Yu said, "we can make the collagen that’s already found in the human body behave in new ways, including some ways that are not found in nature. Modified collagen can give us great new tool for treating injuries and illnesses."

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>