Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU research sheds new light on dangers of high cholesterol

30.08.2005


Research by a Michigan State University cardiologist published in the September edition of Clinical Cardiology has shed new light on the role that cholesterol plays in causing heart attacks, strokes and other cardiovascular events in humans.



The work of George Abela, a professor in MSU’s Department of Medicine and chief of the department’s cardiology section, finds that cholesterol that has built up along the wall of an artery and crystallized from a liquid to a solid state can expand and then burst, sending material into the bloodstream.

It is this chain of events – the expansion of the liquid cholesterol as it crystallizes into a solid – that kick-starts the body’s natural clotting process which, unfortunately in this case, works against the body, essentially shutting down the artery.


“As the cholesterol crystallizes, two things can happen,” Abela said. “If it’s a big pool of cholesterol, it will expand and just tear the cap off the deposit in the arterial wall. Or the crystals, which are sharp, needle-like structures, poke their way through the membrane covering the cholesterol deposit, like nails through wood.”

It is the presence of the cholesterol crystals and other debris material released by the plaque rupture into the bloodstream that activates the clotting mechanism.

“What the clotting system is doing is reacting to an injury in the artery,” he said. “Once a rupture or erosion of the surface of the artery occurs, then the clotting system is activated to do its job.”

Abela compared the crystallization of the cholesterol to putting a plastic bottle of water into a freezer. Over time the water freezes and expands, pushing its way out of the bottle or breaking the bottle altogether.

What this work also means is that physicians and other health care providers now have another weapon in their arsenal against cardiovascular disease.

“So far, treatments have not been focused on this process,” Abela said. “Now we have a target to attack with the various approaches we have. In the past, we’ve treated the various stages that lead to this final stage, rather than preventing or treating this final stage of the condition.”

Abela stressed that it remains imperative that people use diet and exercise to keep cholesterol levels low.

“This really drives the point home how important cholesterol control can be,” he said.

Until now, scientists had thought that inflammation of the wall had caused the breakdown of the cap that kept the cholesterol in the arterial plaque from rupturing. Abela said his findings don’t necessarily discount the inflammation theory, but rather add another dimension to it.

“As the crystals form, they dig their way through the wall of the artery, and that may be a trigger for the inflammation,” he said. “Inflammation is a normal mechanism, one that kicks in to repair the damage. That is why it is common to see inflammation at the site of these events.”

The research was conducted in Abela’s lab, research that he said was “as simple as science can get.”

Essentially, Abela and colleagues took varying amounts of cholesterol, reduced it to a liquid form, and then watched it expand as it solidified. In doing so, it tore through thin biological membranes.

“After the cholesterol crystallized, its volume was about 45 percent larger than what we started with,” he said. “And the entire process took all of about three minutes.”

Tom Oswald | EurekAlert!
Further information:
http://www.msu.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>