Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Step Closer to a Malaria Vaccine

30.08.2005


An international team of scientists that includes a researcher from the U.S. Department of Energy’s Brookhaven National Laboratory has determined the three-dimensional molecular structure of a promising malaria-vaccine component. This research may help lead to a successful vaccine for the disease, which currently infects approximately 400 million people worldwide and kills about two million people each year — mostly children. The study is described in the August 29, 2005, online edition of the Proceedings of the National Academy of Sciences.


A "ribbon diagram" that illustrates the AMA1 segment’s molecular structure



“The high number of deaths from malaria is partly due to the malaria parasite’s acquired resistance to traditional treatments,” said the study’s lead researcher, biologist Adrian Batchelor of the University of Maryland School of Pharmacy. “The parasite is a highly complex organism that develops through different life-cycle stages. This has allowed it to evade the immune system and makes creating a comprehensive vaccine a difficult task.”

Malaria vaccines to date have not been entirely effective, only able to temporarily suppress the disease. A complete, fully protective malaria vaccine will likely consist of several components, each only partially successful at fighting malaria on its own. The potential “part” studied here is a protein known as “Apical Membrane Antigen 1” (AMA1), a protein found on the cell membrane of Plasmodium falciparum, the parasite that causes the most deadly form of malaria.


A vaccine based on AMA1 has a good chance for success because AMA1 is produced, or “expressed,” in two critical parasite life-cycle stages. However, across different malaria strains, AMA1 can have many slight structure variations, called “polymorphisms.” These variations are problematic for vaccine development. Locating the polymorphic sites on AMA1 by determining its structure is essential to understanding how those sites might impact the development of a vaccine.

The research team focused on a particular segment of AMA1. They studied it using x-rays at Brookhaven’s National Synchrotron Light Source (NSLS), a facility that produces x-ray, ultraviolet, and infrared light for research. The x-ray analysis showed that the segment consists of two distinct regions, called domains, and further revealed unusual features: long molecular loops extending outward from the center of one domain. These loops form a “scaffold” for attached amino acids, which can mutate without affecting the function of AMA1. These mutations produce the different AMA1 polymorphisms.

“We think that these polymorphism-bearing loops serve a purpose, such as ‘protecting’ a critical portion of AMA1 from attack by human antibodies,” said Batchelor. “In fact, the AMA1 loops surround a molecular ‘trough’ that we suspect may be responsible for tethering malaria parasites to human red blood cells.”

Biophysicist Michael Becker, the Brookhaven scientist involved, said, “It feels good to contribute to efforts in the fight against malaria, as it’s a critically important disease to eradicate, especially for underprivileged regions of the world, and it is scientifically fascinating. Regarding Brookhaven’s role, it’s the indivisible wedding of science and technology at facilities such as the NSLS — and hopefully at the planned upgraded facility, NSLS-II — that provide us with the tools to pursue and create new science that can solve critical human problems in the real world.”

The researchers plan to build on this research by attempting to identify compounds that will fit into the trough and could prevent the malaria parasite from binding to red blood cells. They will also try to determine if there are non-polymorphic regions of AMA1 that could function as a vaccine.

This study also included scientists from the Commonwealth Scientific and Industrial Research Organization and La Trobe University, both located in Australia. It was supported by the Office of Basic Energy Sciences and the Office of Biological and Environmental Research, both within the U.S. Department of Energy’s Office of Science, as well as the National Center for Research Resources within the National Institutes of Health, and the University of Maryland School of Pharmacy.

Related Research

For another recent announcement about a protein structure that may be important in developing a malaria vaccine, see this release. This structure was also determined at the NSLS at Brookhaven Lab.

Laura Mgrdichian | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>