Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Step Closer to a Malaria Vaccine

30.08.2005


An international team of scientists that includes a researcher from the U.S. Department of Energy’s Brookhaven National Laboratory has determined the three-dimensional molecular structure of a promising malaria-vaccine component. This research may help lead to a successful vaccine for the disease, which currently infects approximately 400 million people worldwide and kills about two million people each year — mostly children. The study is described in the August 29, 2005, online edition of the Proceedings of the National Academy of Sciences.


A "ribbon diagram" that illustrates the AMA1 segment’s molecular structure



“The high number of deaths from malaria is partly due to the malaria parasite’s acquired resistance to traditional treatments,” said the study’s lead researcher, biologist Adrian Batchelor of the University of Maryland School of Pharmacy. “The parasite is a highly complex organism that develops through different life-cycle stages. This has allowed it to evade the immune system and makes creating a comprehensive vaccine a difficult task.”

Malaria vaccines to date have not been entirely effective, only able to temporarily suppress the disease. A complete, fully protective malaria vaccine will likely consist of several components, each only partially successful at fighting malaria on its own. The potential “part” studied here is a protein known as “Apical Membrane Antigen 1” (AMA1), a protein found on the cell membrane of Plasmodium falciparum, the parasite that causes the most deadly form of malaria.


A vaccine based on AMA1 has a good chance for success because AMA1 is produced, or “expressed,” in two critical parasite life-cycle stages. However, across different malaria strains, AMA1 can have many slight structure variations, called “polymorphisms.” These variations are problematic for vaccine development. Locating the polymorphic sites on AMA1 by determining its structure is essential to understanding how those sites might impact the development of a vaccine.

The research team focused on a particular segment of AMA1. They studied it using x-rays at Brookhaven’s National Synchrotron Light Source (NSLS), a facility that produces x-ray, ultraviolet, and infrared light for research. The x-ray analysis showed that the segment consists of two distinct regions, called domains, and further revealed unusual features: long molecular loops extending outward from the center of one domain. These loops form a “scaffold” for attached amino acids, which can mutate without affecting the function of AMA1. These mutations produce the different AMA1 polymorphisms.

“We think that these polymorphism-bearing loops serve a purpose, such as ‘protecting’ a critical portion of AMA1 from attack by human antibodies,” said Batchelor. “In fact, the AMA1 loops surround a molecular ‘trough’ that we suspect may be responsible for tethering malaria parasites to human red blood cells.”

Biophysicist Michael Becker, the Brookhaven scientist involved, said, “It feels good to contribute to efforts in the fight against malaria, as it’s a critically important disease to eradicate, especially for underprivileged regions of the world, and it is scientifically fascinating. Regarding Brookhaven’s role, it’s the indivisible wedding of science and technology at facilities such as the NSLS — and hopefully at the planned upgraded facility, NSLS-II — that provide us with the tools to pursue and create new science that can solve critical human problems in the real world.”

The researchers plan to build on this research by attempting to identify compounds that will fit into the trough and could prevent the malaria parasite from binding to red blood cells. They will also try to determine if there are non-polymorphic regions of AMA1 that could function as a vaccine.

This study also included scientists from the Commonwealth Scientific and Industrial Research Organization and La Trobe University, both located in Australia. It was supported by the Office of Basic Energy Sciences and the Office of Biological and Environmental Research, both within the U.S. Department of Energy’s Office of Science, as well as the National Center for Research Resources within the National Institutes of Health, and the University of Maryland School of Pharmacy.

Related Research

For another recent announcement about a protein structure that may be important in developing a malaria vaccine, see this release. This structure was also determined at the NSLS at Brookhaven Lab.

Laura Mgrdichian | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>