Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Step Closer to a Malaria Vaccine

30.08.2005


An international team of scientists that includes a researcher from the U.S. Department of Energy’s Brookhaven National Laboratory has determined the three-dimensional molecular structure of a promising malaria-vaccine component. This research may help lead to a successful vaccine for the disease, which currently infects approximately 400 million people worldwide and kills about two million people each year — mostly children. The study is described in the August 29, 2005, online edition of the Proceedings of the National Academy of Sciences.


A "ribbon diagram" that illustrates the AMA1 segment’s molecular structure



“The high number of deaths from malaria is partly due to the malaria parasite’s acquired resistance to traditional treatments,” said the study’s lead researcher, biologist Adrian Batchelor of the University of Maryland School of Pharmacy. “The parasite is a highly complex organism that develops through different life-cycle stages. This has allowed it to evade the immune system and makes creating a comprehensive vaccine a difficult task.”

Malaria vaccines to date have not been entirely effective, only able to temporarily suppress the disease. A complete, fully protective malaria vaccine will likely consist of several components, each only partially successful at fighting malaria on its own. The potential “part” studied here is a protein known as “Apical Membrane Antigen 1” (AMA1), a protein found on the cell membrane of Plasmodium falciparum, the parasite that causes the most deadly form of malaria.


A vaccine based on AMA1 has a good chance for success because AMA1 is produced, or “expressed,” in two critical parasite life-cycle stages. However, across different malaria strains, AMA1 can have many slight structure variations, called “polymorphisms.” These variations are problematic for vaccine development. Locating the polymorphic sites on AMA1 by determining its structure is essential to understanding how those sites might impact the development of a vaccine.

The research team focused on a particular segment of AMA1. They studied it using x-rays at Brookhaven’s National Synchrotron Light Source (NSLS), a facility that produces x-ray, ultraviolet, and infrared light for research. The x-ray analysis showed that the segment consists of two distinct regions, called domains, and further revealed unusual features: long molecular loops extending outward from the center of one domain. These loops form a “scaffold” for attached amino acids, which can mutate without affecting the function of AMA1. These mutations produce the different AMA1 polymorphisms.

“We think that these polymorphism-bearing loops serve a purpose, such as ‘protecting’ a critical portion of AMA1 from attack by human antibodies,” said Batchelor. “In fact, the AMA1 loops surround a molecular ‘trough’ that we suspect may be responsible for tethering malaria parasites to human red blood cells.”

Biophysicist Michael Becker, the Brookhaven scientist involved, said, “It feels good to contribute to efforts in the fight against malaria, as it’s a critically important disease to eradicate, especially for underprivileged regions of the world, and it is scientifically fascinating. Regarding Brookhaven’s role, it’s the indivisible wedding of science and technology at facilities such as the NSLS — and hopefully at the planned upgraded facility, NSLS-II — that provide us with the tools to pursue and create new science that can solve critical human problems in the real world.”

The researchers plan to build on this research by attempting to identify compounds that will fit into the trough and could prevent the malaria parasite from binding to red blood cells. They will also try to determine if there are non-polymorphic regions of AMA1 that could function as a vaccine.

This study also included scientists from the Commonwealth Scientific and Industrial Research Organization and La Trobe University, both located in Australia. It was supported by the Office of Basic Energy Sciences and the Office of Biological and Environmental Research, both within the U.S. Department of Energy’s Office of Science, as well as the National Center for Research Resources within the National Institutes of Health, and the University of Maryland School of Pharmacy.

Related Research

For another recent announcement about a protein structure that may be important in developing a malaria vaccine, see this release. This structure was also determined at the NSLS at Brookhaven Lab.

Laura Mgrdichian | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>