Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New dye could offer early test for Alzheimer’s


MIT technique is noninvasive

MIT scientists have developed a new dye that could offer noninvasive early diagnosis of Alzheimer’s disease, a discovery that could aid in monitoring the progression of the disease and in studying the efficacy of new treatments to stop it.
The work will be published in the Aug. 26 issue of Angewandte Chemie.

Today, doctors can only make a definitive diagnosis of Alzheimer’s-currently the fourth-leading cause of death in the United States-through a postmortem autopsy of the brain. "Before you can cure Alzheimer’s, you have to be able to diagnose it and monitor its progress very precisely," said Timothy Swager, leader of the work and a professor in MIT’s Department of Chemistry. "Otherwise it’s hard to know whether a new treatment is working or not."

To that end, Swager and postdoctoral associate Evgueni Nesterov, also from the MIT Department of Chemistry, worked with researchers at Massachusetts General Hospital and the University of Pittsburgh to develop a contrast agent that would first bind to the protein deposits, or plaques, in the brain that cause Alzheimer’s, and then fluoresce when exposed to radiation in the near-infrared range. The new dye could allow direct imaging of Alzheimer’s plaques through a patient’s skull.

Some of the first noninvasive techniques for diagnosing Alzheimer’s involved agents labeled with radioactive elements that could enter the brain and target disease plaque for imaging with positron emission tomography (PET). However, these methods were expensive and limited by the short working lifetime of the labeled agents.

Swager and colleagues developed the new dye, called NIAD-4, through a targeted design process based on a set of specific requirements, including the ability to enter the brain rapidly upon injection, bind to amyloid plaques, absorb and fluoresce radiation in the right spectral range, and provide sharp contrast between the plaques and the surrounding tissue. The compound provided clear visual images of amyloid brain plaques in living mice with specially prepared cranial windows.

To make the technique truly noninvasive, scientists must further refine the dye so it fluoresces at a slightly longer wavelength, closer to the infrared region. Light in the near-IR range can penetrate living tissue well enough to make brain structures visible. Swager likens the effect to the translucence produced when one holds a red laser pointer against the side of a finger.

"This procedure could be done in a chamber with a photodetector and a bunch of lasers, and it would be painless," he said, adding that infrared fluorescence and other optical techniques will lead to a whole new class of noninvasive medical diagnostics. Swager says fluorescing dyes like NIAD-4 could be ready for clinical trials in the near future.

"What we have is a dye that lights up when it binds to amyloids that form in the brains of people with Alzheimer’s. It’s a completely new transduction scheme-a way of translating a physical or chemical event that’s invisible to the naked eye, into a recognizable signal. Further wavelength adjustments in these dyes will allow us to perform in vivo analysis through human tissue."

The new dye was developed as part of a broader effort in sensing technology at MIT’s Institute for Soldier Nanotechnologies. In addition to its applications as a medical diagnostic, Swager says fluorescing dyes like NIAD-4 could work as signals in a wide variety of sensing schemes.

Eve Downing | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>